首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
地球物理   5篇
地质学   12篇
海洋学   1篇
天文学   13篇
自然地理   2篇
  2013年   7篇
  2011年   3篇
  2010年   2篇
  2008年   1篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
This study explores garnet coronas around hedenbergite, which were formed by the reaction plagioclase + hedenbergite→garnet + quartz, to derive information about diffusion paths that allowed for material redistribution during reaction progress. Whereas quartz forms disconnected single grains along the garnet/hedenbergite boundaries, garnet forms ~20‐μm‐wide continuous polycrystalline rims along former plagioclase/hedenbergite phase boundaries. Individual garnet crystals are separated by low‐angle grain boundaries, which commonly form a direct link between the reaction interfaces of the plagioclase|garnet|hedenbergite succession. Compositional variations in garnet involve: (i) an overall asymmetric compositional zoning in Ca, Fe2+, Fe3+ and Al across the garnet layer; and (ii) micron‐scale compositional variations in the near‐grain boundary regions and along plagioclase/garnet phase boundaries. These compositional variations formed during garnet rim growth. Thereby, transfer of the chemical components occurred by a combination of fast‐path diffusion along grain boundaries within the garnet rim, slow diffusion through the interior of the garnet grains, and by fast diffusion along the garnet/plagioclase and the garnet/hedenbergite phase boundaries. Numerical simulation indicates that diffusion of Ca, Al and Fe2+ occurred about three to four, four and six to seven orders of magnitude faster along the grain boundaries than through the interior of the garnet grains. Fast‐path diffusion along grain boundaries contributed substantially to the bulk material transfer across the growing garnet rim. Despite the contribution of fast‐path diffusion, bulk diffusion through the garnet rim was too slow to allow for chemical equilibration of the phases involved in garnet rim formation even on a micrometre scale. Based on published garnet volume diffusion data the growth interval of a 20‐μm‐wide garnet rim is estimated at ~103–104 years at the inferred reaction conditions of 760 ± 50 °C at 7.6 kbar. Using the same parameterization of the growth law, 100‐μm‐ and 1‐mm‐thick garnet rims would grow within 105–106 and 106–107 years respectively.  相似文献   
2.
REPLY     
  相似文献   
3.
The Lower Freshwater Molasse (Untere Susswasser Molasse) crops out over a wide area of the Swiss Molasse Basin. Coarse grained alluvial fan conglomerates dominate in proximal basin areas along the Alpine front. These conglomerates pass northwards into sandstones and mudstones of an extensive northeastward draining meandering river system which ran parallel to the basin axis. Sedimentological study of outcrops, quarry exposures and boreholes in the basal Miocene (‘Aquitanian‘) has permitted detailed facies analysis of this distal alluvial sequence. The distal Aquitanian is made up of distinct ‘architectural elements’characterized by their geometries and sedimentary structures. Each may be assigned to a particular depositional setting: meander belt, levees, crevasse channels and splays, overbank fines and palaeosols, and lacustrine. Meander belt sandstones were deposited in mixed load channels with a dominant bedload component. Sandstones commonly comprise amalgamated and locally stacked ribbon bodies 2–15 m thick and 150–1500 m wide. Interbedded rippled, laminated and mottled fine grained levee sandstones and siltstones form lenticular packages up to 3 m thick and 30–100 m across. Small scale crevasse channel sandstones 2–4 m thick and 5–10 m across pass laterally into metre scale, medium to fine grained crevasse sandstone sheets. Rare laminated lacustrine siltstones occur only in the north-east part of the basin. Floodplain mudstones and marls make up the remainder of the succession. These display a variety of pedogenic features recording cyclical palaeosol development. Palaeosols show strong variations in morphology and maturity both laterally across the floodplain and downstream along the basin axis, reflecting local variation in aggradation rate associated with proximity to alluvial channel courses as well as regional variation in subsidence and floodplain drainage. Analysis of the organization and distribution of the various sediment bodies permits reconstruction of the fluvial system and allows development of a model for the sedimentary architecture of the Lower Freshwater Molasse in the study area. Integration of palaeosol studies into a well defined architectural framework assists recognition of areal facies belts and may aid location of sand-prone sequences in the subsurface.  相似文献   
4.
Abstract– We have developed new sample preparation and analytical techniques tailored for entire aerogel tracks of Wild 2 sample analyses both on “carrot” and “bulbous” tracks. We have successfully ultramicrotomed an entire track along its axis while preserving its original shape. This innovation allowed us to examine the distribution of fragments along the entire track from the entrance hole all the way to the terminal particle. The crystalline silicates we measured have Mg‐rich compositions and O isotopic compositions in the range of meteoritic materials, implying that they originated in the inner solar system. The terminal particle of the carrot track is a 16O‐rich forsteritic grain that may have formed in a similar environment as Ca‐, Al‐rich inclusions and amoeboid olivine aggregates in primitive carbonaceous chondrites. The track also contains submicron‐sized diamond grains likely formed in the solar system. Complex aromatic hydrocarbons distributed along aerogel tracks and in terminal particles. These organics are likely cometary but affected by shock heating.  相似文献   
5.
Abstract– Space weathering products, such as agglutinates and nanophase iron‐bearing rims are easily preserved through lithification in lunar regolith breccias, thus such products, if produced, should be preserved in asteroidal regolith breccias as well. A study of representative regolith breccia meteorites, Fayetteville (H4) and Kapoeta (howardite), was undertaken to search for physical evidence of space weathering on asteroids. Amorphous or npFe0‐bearing rims cannot be positively identified in Fayetteville, although possible glass rims were found. Extensive friction melt was discovered in the meteorite that is difficult to differentiate from weathered materials. Several melt products, including spherules and agglutinates, as well as one irradiated rim and one possible npFe0‐bearing rim were identified in Kapoeta. The existence of these products suggests that lunar‐like space weathering processes are, or have been, active on asteroids.  相似文献   
6.
The response of shallow‐water sequences to oceanic anoxic event 2 and mid‐Cenomanian events 1a and 1b was investigated along the west African margin of Morocco north of Agadir (Azazoul) and correlated with the deep‐water sequence of the Tarfaya Basin (Mohammed Beach) based on biostratigraphy, mineralogy, phosphorus and stable isotopes. In the deeper Mohammed Beach section results show double peaks in δ13Corg for mid‐Cenomanian events 1a and 1b (Rotalipora reicheli biozone, lower CC10a biozone), the characteristic oceanic anoxic event 2 δ13C excursion (Rotalipora cushmani extinction, top of CC10a biozone) and laminated (anoxic) black shale. In the shallow environment north of Agadir, a fluctuating sea‐level associated with dysoxic, brackish and mesotrophic conditions prevailed during the middle to late Cenomanian, as indicated by oyster biostromes, nannofossils, planktonic and benthonic foraminiferal assemblages. Anoxic conditions characteristic of oceanic anoxic event 2 (for example, laminated black shales) did not reach into shallow‐water environments until the maximum transgression of the early Turonian. Climate conditions decoupled along the western margin of Morocco between mid‐Cenomanian event 1b and the Cenomanian–Turonian boundary, as also observed in eastern Tethys. North of Agadir alternating humid and dry seasonal conditions prevailed, whereas in the Tarfaya Basin the climate was dry and seasonal. This climatic decoupling can be attributed to variations in the Intertropical Convergence Zone and in the intensity of the north‐east trade winds in tropical areas.  相似文献   
7.
8.
Abstract— We studied patinas on lunar rocks 75075 and 76015 from the Apollo collection using a multi-disciplinary approach, including scanning electron microscopy (SEM), energy dispersive x-ray spectrometry (EDS), transmission electron microscopy (TEM), wavelength-dispersive x-ray (WDS) mapping, Mössbauer spectroscopy, spectral reflectance, and microspectrophotometry. Based on SEM petrography, we have defined three textural types of patina: glazed, fragmental, and classic (cratered). The presence of classic patina is diagnostic of lunar samples that have been exposed directly to the space weathering environment. It is characterized by the presence of microcraters and glass pancakes and is the patina type studied by earlier workers. Classic patina is found on 76015 but not on 75075. Glazed patina is found on both 76015 and 75075, whereas fragmental patina is found only on 75075. The glazed and fragmental patinas on 75075 were probably formed as a result of relatively large nearby impacts; and although these two types of patina are not strictly the result of direct exposure to the space weathering environment, they are important because they affect the optical properties of the rocks. Field emission gun SEM (FE-SEM) of classic patina on 76015 shows evidence of possible solar wind sputtering erosion. Transmission electron microscope studies of 76015 reveal the presence of impact-generated deposits and solar flare particle tracks which, like microcraters and pancakes, are diagnostic of direct exposure to space weathering processes. The outermost surface of the 76015 patina consists of an amorphous rim very much like the rims found on individual lunar soil grains; this amorphous patina rim probably formed by similar processes of impact-generated vapor condensation and possible sputter deposition. Wavelength-dispersive x-ray element maps of polished thin sections of 75075 and 76015 indicate that patina compositions are poor indicators of the compositions and mineralogies of the rocks underlying them. On average, the reflectance spectra of patinas on both samples are slightly darker than those of their unweathered equivalents. Microreflectance measurements show that a thick patina can dramatically alter the optical properties of the rock on which it forms. The backscatter Mössbauer (BaMS) spectrum of a patina-covered surface of 76015 is very similar to that of an unweathered surface, indicating that the Mössbauer signal is generated from beneath the patina. Because BaMS “sees” through surface space-weathering effects to the underlying rock, this technique has great potential for use in robotic missions to other planetary bodies.  相似文献   
9.
10.
Abstract— Using new techniques to examine the products of space weathering of lunar soils, we demonstrate that nanophase reduced iron (npFe0) is produced on the surface of grains by a combination of vapor deposition and irradiation effects. The optical properties of soils (both measured and modeled) are shown to be highly dependent on the cumulative amount of npFe0, which varies with different starting materials and the energetics of different parts of the solar system. The measured properties of intermediate albedo asteroids, the abundant S‐type asteroids in particular, are shown to directly mimic the effects predicted for small amounts of npFe0 on grains of an ordinary chondrite regolith. This measurement and characterization of space weathering products seems to remove a final obstacle hindering a link between the abundant ordinary chondrite meteorites and common asteroids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号