This session was the first of the Symposium, for an obviousreason: the study of behavioural patterns in open aquatic ecosystemsdepends strongly on the availability of sophisticated technologyallowing observation and recording in an opaque and even hostilemedium. Dr Penny Allen's opening lecture on "Bringing Oceansinto Focus: The Challenges of Filming Fish Behaviour for WildlifeDocumentaries" was followed by 10 oral communications and 17posters which dealt with technical improvement (9 presentations),examples of application (11 presentations), and experimentaldesign in the open  相似文献   
6.
Long-term response of an arctic fiord system to lead-zinc mining and submarine disposal of mine waste (Maarmorilik, West Greenland)     
Søndergaard J  Asmund G  Johansen P  Rigét F 《Marine environmental research》2011,71(5):331-341
Contamination by lead (Pb) and zinc (Zn) was studied in seawater, sediments, seaweeds and blue mussels near the former Black Angel Pb-Zn Mine in Maarmorilik, West Greenland. The mine operated during the period 1973-90 when mine waste (tailings and later waste rock) was discharged directly into the sea. Metal concentrations peaked during the mining period and Pb and Zn in seawater within the discharge area were measured up to 440 and 790 μg L?1, respectively. Pb in fiord sediments, seaweeds and blue mussels just outside the discharge area were measured in concentrations up to 190, 84 and 2650 and Zn up to 300, 360 and 1190 μg g?1 dry wt., respectively. Within the discharge area, seawater metal concentrations (especially Pb) decreased abruptly after mine closure. Metals concentrations in sediments and biota, however, decreased more slowly and two decades after mine closure seaweeds and blue mussels were still contaminated 12 km from the mine.  相似文献   
7.
Heavy metal contamination of a Greenland fjord system by mine wastes     
Douglas H. Loring  Gert Asmund 《Environmental Geology》1989,14(1):61-71
Since 1973, about 500,000 tons/yr of metal-rich particulate tailings from a lead/zinc flotation mill have been discharged through a submarine outfall into a two fjord system on the west coast of Greenland. Differential solubilization of particulate metals by seawater, seasonal water mixing, and sill exchange tailings dispersal processes have resulted in high, but seasonally variable Zn, Cd, and Pb contamination of the water, and suspended particulate matter (SPM).Chemical partition of the SPM shows that most (85-99 percent) of the Pb, but relatively low proportions of Zn (14-26 percent) and Cd (10–20 percent) are weakly bound to the SPM. Such particulate metal characteristics allow the real time effects of tailings discharges and dispersal on the system to be traced even in the sediments where tailings accumulation is very slow (0.1 cm/yr).Fjord seaweeds and blue mussels also contain varying amounts of Zn, Pb, and Cd depending on the metal and their location relative to the tailings outfall and apparently responded almost instantly to the metal contamination, as did the water and SPM. High Pb concentrations in the fjord mussels most likely derive from the preferential uptake of available particulate Pb, whereas the seaweeds appear to derive most of their heavy metal concentrations from the dissolved phase. The evidence from this and other sites as well as from experimental work, indicates that any discharge of Pb-bearing particles into the marine environment either directly as mine wastes or indirectly as from natural runoff from current and former lead mining sites results in immediate lead contamination of the in situ mussel population.  相似文献   
8.
Geochemical factors controlling accumulation of major and trace elements in Greenland coastal and fjord sediments     
D. H. Loring  G. Asmund 《Environmental Geology》1996,28(1):2-11
 The major (Al, Ti, Ca, Mg, Fe, Mn, Si) and trace element (Cd, Cr, Cu, Hg, Li, Ni, Pb, V, Zn) concentrations in surficial (<20 cm) sediments from fjords and open coastal waters around Greenland have been determined. Regionally, high concentrations of Fe, Ti, Mg, Cr, Cu, Ni, and V occur in some west and east coast sediments, but they appear to be natural in origin, as there is no indication of anthropogenic influence. Chemical partition indicates that most of the heavy metals are structurally bound in various silicate, oxide, and sulfide minerals. These host minerals occur more or less equally in the coarse and fine sediment fractions (material >63 μm and <63 μm) and have accumulated at the same rate as other detrital clastic material. Provenance and glaciomarine deposition are the main factors controlling the abundance and distribution of the major and trace elements. The chemical composition reflects the mineralogical differences in the provenance of glacial marine material deposited by water and ice adjacent to Greenland. The main source of the sediments enriched in Ti, Fe, Mg, Cr, Cu, Ni, and V appears to be material derived from the volcanic rocks of the Mesozoic-Tertiary Provinces of Greenland by glacial erosion. Received: 26 June 1995 · Accepted: 11 August 1995  相似文献   
9.
An approach to combined rock physics and seismic modelling of fluid substitution effects     
Tor Arne Johansen  Åsmund Drottning  Isabelle Lecomte  Håvar Gjøystdal 《Geophysical Prospecting》2002,50(2):119-137
The aim of seismic reservoir monitoring is to map the spatial and temporal distributions and contact interfaces of various hydrocarbon fluids and water within a reservoir rock. During the production of hydrocarbons, the fluids produced are generally displaced by an injection fluid. We discuss possible seismic effects which may occur when the pore volume contains two or more fluids. In particular, we investigate the effect of immiscible pore fluids, i.e. when the pore fluids occupy different parts of the pore volume. The modelling of seismic velocities is performed using a differential effective‐medium theory in which the various pore fluids are allowed to occupy the pore space in different ways. The P‐wave velocity is seen to depend strongly on the bulk modulus of the pore fluids in the most compliant (low aspect ratio) pores. Various scenarios of the microscopic fluid distribution across a gas–oil contact (GOC) zone have been designed, and the corresponding seismic properties modelled. Such GOC transition zones generally give diffuse reflection regions instead of the typical distinct GOC interface. Hence, such transition zones generally should be modelled by finite‐difference or finite‐element techniques. We have combined rock physics modelling and seismic modelling to simulate the seismic responses of some gas–oil zones, applying various fluid‐distribution models. The seismic responses may vary both in the reflection time, amplitude and phase characteristics. Our results indicate that when performing a reservoir monitoring experiment, erroneous conclusions about a GOC movement may be drawn if the microscopic fluid‐distribution effects are neglected.  相似文献   
10.
Applying foraminiferal stratigraphy as a biomarker for heavy metal contamination and mining impact in a fiord in West Greenland     
Elberling B  Knudsen KL  Kristensen PH  Asmund G 《Marine environmental research》2003,55(3):235-256
Sulphidic mine waste disposed in marine environments constitutes an environmental risk to aquatic life due to potential uptake and accumulation of heavy metals in biota. Fiord sediments near the former Black Angel Mine in West Greenland are contaminated by lead and zinc as a result of submarine tailings disposal in 1973-1990. In 1999 cores were taken up to 10 km away from the disposal area. Analyses include heavy metals, radiochemical dating (210Pb) and high-resolution foraminiferal stratigraphy. The mining operation resulted in significant changes in the assemblage composition. In addition, up to 20% of the Melonis barleeanus population found in sediment deposited during nearby tailings disposal was deformed compared to a natural background of less than 5%. Throughout cores representing the last 100 years of sedimentation, the total numbers and frequency of morphological abnormalities among M. barleeanus revealed some correlation with heavy metals concentrations (up to r2 = 79%). We conclude that abnormalities among foraminifera may represent a useful biomarker for evaluating trends in the biological impact resulting of submarine tailings disposal as well as long-term environmental impact and subsequent recovery.  相似文献   
1 [2] 下一页 » 末  页»
  首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
地球物理   3篇
地质学   5篇
海洋学   4篇
  2018年   1篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Mercury concentrations are clearly elevated in the surface and sub-surface layers of peat cores collected from a minerotrophic (“groundwater-fed”) fen in southern Greenland (GL) and an ombrotrophic (“rainwater-fed”) bog in Denmark (DK). Using 14C to precisely date samples since ca. AD 1950 using the “atmospheric bomb pulse,” the chronology of Hg accumulation in GL is remarkably similar to the bog in DK where Hg was supplied only by atmospheric deposition: this suggests not only that Hg has been supplied to the surface layers of the minerotrophic core (GL) primarily by atmospheric inputs, but also that the peat cores have preserved a consistent record of the changing rates of atmospheric Hg accumulation. The lowest Hg fluxes in the GL core (0.3 to 0.5 μg/m2/yr) were found in peats dating from AD 550 to AD 975, compared to the maximum of 164 μg/m2/yr in AD 1953. Atmospheric Hg accumulation rates have since declined, with the value for 1995 (14 μg/m2/yr) comparable to the value for 1995 obtained by published studies of atmospheric transport modelling (12 μg/m2/yr).The greatest rates of atmospheric Hg accumulation in the DK core are also found in the sample dating from AD 1953 and are comparable in magnitude (184 μg/m2/yr) to the GL core; again, the fluxes have since gone into strong decline. The accumulation rates recorded by the peat core for AD 1994 (14 μg/m2/yr) are also comparable to the value for 1995 obtained by atmospheric transport modelling (18 μg/m2/yr). Comparing the Pb/Ti and As/Ti ratios of the DK samples with the corresponding crustal ratios (or “natural background values” for preanthropogenic peat) shows that the samples dating from 1953 also contain the maximum concentration of “excess” Pb and As. The synchroneity of the enrichments of all three elements (Hg, Pb, and As) suggests a common source, with coal-burning the most likely candidate. Independent support for this interpretation was obtained from the Pb isotope data (206Pb/207Pb = 1.1481 ± 0.0002 in the leached fraction and 1.1505 ± 0.0002 in the residual fraction) which is too radiogenic to be explained in terms of gasoline lead alone, but compares well with values for U.K. coals. In contrast, the lowest values for 206Pb/207Pb in the DK profile (1.1370 ± 0.0003 in the leached fraction and 1.1408 ± 0.0003 in the residual fraction) are found in the sample dating from AD 1979: this shows that the maximum contribution of leaded gasoline occurred approximately 25 yr after the zenith in total anthropogenic Pb deposition.  相似文献   
2.
The sequestration of CO2 in subsurface reservoirs constitutes an immediate counter‐measure to reduce anthropogenic emissions of CO2, now recognized by international scientific panels to be the single most critical factor driving the observed global climatic warming. To ensure and verify the safe geological containment of CO2 underground, monitoring of the CO2 site is critical. In the high Arctic, environmental considerations are paramount and human impact through, for instance, active seismic surveys, has to be minimized. Efficient seismic modelling is a powerful tool to test the detectability and imaging capability prior to acquisition and thus improve the characterization of CO2 storage sites, taking both geological setting and seismic acquisition set‐up into account. The unique method presented here avoids the costly generation of large synthetic data sets by employing point spread functions to directly generate pre‐stack depth‐migrated seismic images. We test both a local‐target approach using an analytical filter assuming an average velocity and a full‐field approach accounting for the spatial variability of point spread functions. We assume a hypothetical CO2 plume emplaced in a sloping aquifer inspired by the conditions found at the University of Svalbard CO2 lab close to Longyearbyen, Svalbard, Norway, constituting an unconventional reservoir–cap rock system. Using the local‐target approach, we find that even the low‐to‐moderate values of porosity (5%–18%) measured in the reservoir should be sufficient to induce significant change in seismic response when CO2 is injected. The sensitivity of the seismic response to changes in CO2 saturation, however, is limited once a relatively low saturation threshold of 5% is exceeded. Depending on the illumination angle provided by the seismic survey, the quality of the images of five hypothetical CO2 plumes of varying volume differs depending on the steepness of their flanks. When comparing the resolution of two orthogonal 2D surveys to a 3D survey, we discover that the images of the 2D surveys contain significant artefacts, the CO2‐brine contact is misplaced and an additional reflector is introduced due to the projection of the point spread function of the unresolvable plane onto the imaging plane. All of these could easily lead to a misinterpretation of the behaviour of the injected CO2. Our workflow allows for testing the influence of geological heterogeneities in the target aquifer (igneous intrusions, faults, pervasive fracture networks) by utilizing increasingly complex and more realistic geological models as input as more information on the subsurface becomes available.  相似文献   
3.
It is well known that oxidation of sulphide-containing coal mine waste has considerable environmental impacts due to generation of acid mine drainage (AMD) containing high dissolved metal concentrations. This study is the first to evaluate seasonal trends in the release of AMD from high arctic coal mine waste rock. Runoff from an abandoned coal mine waste pile in Svalbard (78°N) was studied during the entire 3–4 month period with running water in 2005. Temporal variation in concentrations and fluxes of dissolved elements were quantified based on daily water sampling and used to evaluate weathering processes and estimate element budgets on a daily, seasonal and annual basis. Apart from alkali- and alkaline earth metals; Fe, Al, Mn, Zn and Ni were found to be the most abundant metals in the runoff. Element concentrations were highly correlated and suggest that the processes of sulphide oxidation, ion exchange and silicate weathering occurring within the waste pile were linked throughout the measuring period. Observed pH values varied from 2.8 to 5.2 and SO4 concentrations from 21 to 1463 mg L−1. Manganese and Al concentrations were observed above phytotoxic levels (up to 4 and 23 mg L−1, respectively) and were considered the most critical elements in terms of environmental impact. Throughout the summer a total dissolved quantity of 58 kg Mn, 238 kg Al and 13,700 kg SO4 was released from the pile containing approximately 200,000 m3 of pyritic waste material (<1% FeS2). The highest concentrations of metals, lowest pH values and a very high daily release of H2SO4 (up to twice as high as the following month) were observed during the first week of thaw. This is considered a result of an accumulation of weathering products, generated within the waste pile during winter and released as a pollution-flush during early spring. Similar accumulation/flush sequences were observed later in the summer where rain events following relatively long dry periods caused high daily metal fluxes and on some occasions also elevated dissolved metal concentrations. Despite highly variable weather/climate conditions during the rest of the summer the investigated waste rock pile acted like a relative constant pollution-source during this period. Future investigations regarding the environmental impact of mine waste in the region should include measurements of bioavailable metals in order to provide further details on the seasonal trends in environmental impact.  相似文献   
4.
根据三维地震地质模型对地震数据进行模拟是从勘探到生产的周期内决策过程中的一个不可或缺的组成部分。虽然对于在储层内的动力过程和地震地质的模型表述已经取得很大进展,但如何从这些模型得到地震数据的精确模拟仍面临很多挑战。通常是在地球模型范围内根据物性用一维褶积方法来模拟地震数据。然而这个过程一般不考虑地震勘探布局和盖层对地震信号的影响。我们审视了为什么这些因素会制约三维地球模型的有效性,并考虑了为什么需要把盖层和地震勘探布局对三维覆盖和分辨率的影响加进模拟过程之中。我们提出了一种新方法,把建立物性模型和一种新的地震模拟技术结合起来,给出一个工作流程;利用这个流程,勘探工作者可以很快模拟出三维的PSDM数据,这些数据加进了盖层和地震勘探布局对覆盖及分辨率的影响。我们利用从远离挪威海岸的一个油田得到的数据,在考虑覆盖和分辨率效应的地震数据模拟之前,对岩石物性做了一些扰动,然后进行地震数据模拟,以此来说明如何可以用这种方法提高三维地球模型的精确性和增进我们对储层的了解。  相似文献   
5.
   Discussion summary: session 1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号