首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
大气科学   2篇
地球物理   3篇
地质学   2篇
海洋学   2篇
  2016年   1篇
  2012年   1篇
  2002年   1篇
  1993年   2篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有9条查询结果,搜索用时 203 毫秒
1
1.
Many examples of mixed magmas in banded lavas have been studied. Another type of mixed magmas or inhomogeneity of magma reservoir found in the 1962 lava flows of Miyake-zima Volcano erupted from fissures is reported.  相似文献   
2.
We designed a new pop-up type Ocean Bottom Seismometer (OBS) in order to study micro-earthquakes in off-shore areas. With a 57 cm O.D. sphere of high tension aluminium alloy, the OBS system, including one vertical and one horizontal geophone, can safely operate on ocean floors of up to 6000 m depth for seismic observations. The amplified seismic data and the time code are directly recorded on the four-channel cassette deck for periods of up to one month. The frequency response curve throughout the recording and play-back system is flat for the range, 1–15 Hz (–3 dB). The anchor release and the geophone clamp are operated by an acoustic command signal.So far, we have deployed our OBS's 42 times in the ocean. All of the OBS's deployed have been recovered safely. Seismic data has provided seismological evidence for a number of processes associated with tectonism along subduction zones and spreading ridges (e.g., Eguchi et al., 1986).  相似文献   
3.
Koichi  Aoyagi Mamoru  Omokawa 《Island Arc》1993,2(4):273-279
Abstract Various siliceous rocks are found in the Ohdoji, Akaishi and Maido Formations from the western Aomori basin, and the Yotsuzawa and Wadagawa Formations from the eastern Aomori basin of northern Honshu, Japan. These rocks are classified into diatomite, siliceous shale and chert.
Diatomite is composed of abundant amorphous silica and has porosity between 50 and 65%. Siliceous shale is composed of a large amount of quartz, and has porosity ranging from 25 to 35%. Chert is chiefly composed of cristobalite or quartz, and has porosity between 20 to 30%.
Average contents of total organic carbon, S1 and S2 generally increase from argillaceous rocks → diatomites → siliceous shales → cherts. Maturation of organic matter in these rocks is generally lower than that in average source rocks. Diatoms, which appeared in the late Cretaceous and became increasingly important in the Miocene, are the principal primary producers of organic matter in the marine environment during the Cenozoic. Excellent organic components and higher biological productivity show that diatoms might be the most important source of petroleum during the Neogene in Japan.
Proteins, carbohydrates and lipids in diatoms have been transformed into fulvic acids, humic acids and humin by polycondensation and polymerization. Later, these humin materials could be changed into insoluble kerogen under the effect of mild temperature and pressure. A part of the lipids would transform to geochemical fossils (biomarkers). Amorphous silica in cells of diatoms would change to low-cristobalite and low-quartz by the increase of geothermal temperature.  相似文献   
4.
5.
6.
Current concepts of oil and gas generation by thermal decomposition of kerogen are reviewed. Primary oil migration mechanisms requiring large quantities of water to serve as a carrier for the movement of oil from source rock to reservoir are discussed. Previous investigators regarded the expulsion of interlayer water from montmorillonite and montmorillonite-illite mixed-layer minerals by transformation during diagenesis as the most important source of the carrier water.The process of diagenesis is subdivided into three stages based on the results of experimental compaction studies on montmorillonite clay, on studies of the expulsion mechanism of interlayer and interstitial waters, and on the observed changes in pores and mineral grains in argillaceous sediments during these stages. As a result, we concluded that the migration of oil chiefly occurs during the late compaction stage when the sediment's porosity ranges from 30 to 10%.This conclusion implies that a large amount of oil can move during the period when the active generation of oil corresponds with the primary migration of carrier water. For instance, in the oil-bearing Miocene sediments of the Akita area of northern Japan, the oil generation temperature ranged from 100 to 150°C and the average migration depth was between 1300 and 2600 m. Therefore, the possibility of large oil pool formation will be high in the basin where the paleo-geothermal gradient is about 5.0°C/100 m. In fact, it is expected that the paleo-geothermal gradients in the vicinities of large oil fields will be very close to this value.Prediction of the type and amount of hydrocarbons in the exploration area will be possible by an examination of the paleo-geothermal gradient in the area and by a study of the relation between absolute porosity and burial depth of argillaceous rocks.  相似文献   
7.
8.
A permanent real-time geophysical observatory using a submarine cable was developed and deployed to monitor seismicity, tsunamis, and other geophysical phenomena in the southern Kurile subduction zone. The geophysical observatory comprises six bottom sensor units, two branching units, a main electro-optical cable with a length of 240 km and two land stations. The bottom sensor units are: 1) three ocean bottom broadband seismometers with hydrophone; 2) two pressure gauges (PGs); 3) a cable end station with environmental measurement sensors. Real-time data from all the undersea sensors are transmitted through the main electro-optical cable to the land station. The geophysical observatory was installed on the continental slope of the southern Kurile trench, southeast Hokkaido, Japan in July 1999. Examples of observed data are presented. Sensor noises and resolution are mentioned for the ocean bottom broadband seismometers and the PGs, respectively. An adaptable observation system including very broadband seismometers is scheduled to be connected to the branching unit in late 2001. The real-time geophysical observatory is expected to greatly advance the understanding of geophysical phenomena in the southern Kurile subduction zone  相似文献   
9.
The writers have been studying the origin of porosity in the Neogene calcareous rocks of Akita, Japan, and in the Mississippian Windsor Group carbonate rocks of Nova Scotia, Canada. The former consist mainly of dolomitic clayey-siliceous marls, derived mainly from opaline skeletal debris of microscopic organisms. These marls were deposited in bathyal to inner-neritic environments. The carbonate rocks of Windsor Group, which include both dolostones and limestones, originated from biogenic carbonate debris and were deposited in inner-shelf to shoal environments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号