首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   3篇
大气科学   5篇
地球物理   2篇
地质学   7篇
天文学   1篇
自然地理   4篇
  2021年   1篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  1993年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
This study builds on an earlier analysis of resilience of India and Indian states to climate change. The previous study (Brenkert and Malone, Clim Change 72:57–102, 2005) assessed current resilience; this research uses the Vulnerability–Resilience Indicators Model (VRIM) to project resilience to 2095 and to perform an uncertainty analysis on the deterministic results. Projections utilized two SRES-based scenarios, one with fast-and-high growth, one with delayed growth. A detailed comparison of two states, the Punjab and Orissa, points to the kinds of insights that can be obtained using the VRIM. The scenarios differ most significantly in the timing of the uncertainty in economic prosperity (represented by GDP per capita) as a major factor in explaining the uncertainty in the resilience index. In the fast-and-high growth scenario the states differ most markedly regarding the role of ecosystem sensitivity, land use and water availability. The uncertainty analysis shows, for example, that resilience in the Punjab might be enhanced, especially in the delayed growth scenario, if early attention is paid to the impact of ecosystems sensitivity on environmental well-being of the state. By the same token, later in the century land-use pressures might be avoided if land is managed through intensification rather than extensification of agricultural land. Thus, this methodology illustrates how a policy maker can be informed about where to focus attention on specific issues, by understanding the potential changes at a specific location and time—and, thus, what might yield desired outcomes. Model results can point to further analyses of the potential for resilience-building.  相似文献   
2.
3.
We present an overview of the data and models collected for the Whole Heliosphere Interval, an international campaign to study the three-dimensional solar?Cheliospheric?Cplanetary connected system near solar minimum. The data and models correspond to solar Carrington Rotation 2068 (20 March??C?16 April 2008) extending from below the solar photosphere, through interplanetary space, and down to Earth??s mesosphere. Nearly 200 people participated in aspects of WHI studies, analyzing and interpreting data from nearly 100 instruments and models in order to elucidate the physics of fundamental heliophysical processes. The solar and inner heliospheric data showed structure consistent with the declining phase of the solar cycle. A closely spaced cluster of low-latitude active regions was responsible for an increased level of magnetic activity, while a highly warped current sheet dominated heliospheric structure. The geospace data revealed an unusually high level of activity, driven primarily by the periodic impingement of high-speed streams. The WHI studies traced the solar activity and structure into the heliosphere and geospace, and provided new insight into the nature of the interconnected heliophysical system near solar minimum.  相似文献   
4.
5.
In this paper we present the initial results from a project to develop a population health model so we can extend the scenarios included in the IPCC’s Special Report on Emission Scenarios to include population health status. Our initial hypothesis was that some climatic variable, particularly temperature, would have a significant impact on health outcomes. After experiments – using the Global Burden of Disease (GBD) data on Years of Life Lost (YLL) and Years Lived with disability (YLD) both by WHO region and by five degree latitude band as outcome variables – failed, we settled on life expectancy (LE) as the best measure of health status. We discovered that there is a solid relationship between LE and the GBD data from our first experiments, allowing us to extend the results from the LE model. The LE model used cross section data on LE for 91 countries and included temperature, per capita income, access to clean water and sanitation, literacy, simple medical attention, nutrition, per capita medical expenditure, electricity use per capita, and automobiles per capita as independent variables. While all were individually associated with LE, our model of choice included literacy, access to clean water and sanitation, simple medical attention, an indictor variable for Sub-Saharan Africa and purchasing-power parity per capita income. Note that neither temperature nor calories enter into this model. The fit between life expectancy, as predicted by this model, and actual life expectancy was quite good (R 2 =0.90), except for Rwanda, Uganda, and Madagascar; these countries accounted for one half of the unexplained variation in the model. The LE model was then used to develop trajectories of life expectancy in India for the four IPCC SRES storylines, where values for the independent variables were extrapolated based on the story line content. YLL and YLD estimates were created using the current cross relationship of these outcomes to LE. Given the lack of a general role for climate in our LE model, future work is planned to explore how to add detailed climate related impacts, to explore alternative nutritional variables, as well as extend the data set to allow a cross-section time-series approach.  相似文献   
6.
Biotechnology is the manipulation of organisms to carry out specific processes. It has various applications that are relevant to many aspects of geography. At a fundamental level biotechnology is directed at manipulating energy flows, especially those in agriculture. Improved crop varieties, disease and pest control, as well as nutrient enhancement can all be achieved by biotechnology, culminating in increased agricultural productivity. There are significant environmental advantages though there are also constraints imposed by economic considerations. Mineral extraction, metal recycling and pollution abatement can also be improved by biotechnology which thus contributes to more efficient resource use and enhanced environmental quality. Food and fuel energy, notably biomass fuels, can also be so produced. The manifold implications of this technology for earth and social sciences thus require its inclusion in geographical studies.  相似文献   
7.
Isolation and characterization of Aeromonas species were undertaken in the Ebrié lagoon (Abidjan, Côte d’Ivoire) over a one year period. Overall 63% of 501 water samples were identified as positive for Aeromonas spp. A. sobria, A. hydrophila and A. caviae represent respectively 49.20%, 20.63% and 30.15% of the positive samples. Thirty nine of the positive samples were recovered from surface water samples; while 24 bottom water samples were positive for Aeromonas. Aeromonas species are most frequently (82.53) present in the Ebrié lagoon urban area during the rainy and flood seasons when the salinity is low and below 10‰. A lower isolation frequency is noticed during the dry season when water salinity is over 10‰. Finally, a higher isolation frequency occurred in samples with highest counts of Escherichia coli.  相似文献   
8.
9.
A new method is proposed for the development of a class of elastoplastic thermomicromechanical constitutive laws for granular materials. The method engenders physical transparency in the constitutive formulation of multiscale phenomena from the particle to bulk. We demonstrate this approach for dense, cohesionless granular media under quasi-static loading conditions. The resulting constitutive law—expressed solely in terms of particle scale properties—is the first of its kind. Micromechanical relations for the internal variables, tied to nonaffine deformation, and their evolution laws, are derived from a structural mechanical analysis of a particular mesoscopic event: confined, elastoplastic buckling of a force chain. It is shown that the constitutive law can reproduce the defining behavior of strain-softening under dilatation in both the mesoscopic and macroscopic scales, and reliably predict the formation and evolution of shear bands. The thickness and angle of the shear band, the distribution of particle rotation and the evolution of the normal contact force anisotropy inside the band, are consistent with those observed in discrete element simulations and physical experiments.  相似文献   
10.
Recent analysis of data from triaxial tests on sand and discrete element simulations indicate the final pattern of failure is encoded in grain motions during the nascent stages of loading. We study vortices that are evident from grain displacements at the start of loading and bear a direct mathematical connection to boundary conditions, uniform continuum strain and shear bands. Motions of three grains in mutual contact, that is, 3‐cycles, manifest vortices. In the initial stages of loading, 3‐cycles initiate a rotation around a region Ω* where the shear band ultimately develops. This bias sets a course in 3‐cycle evolution, determining where they will more likely collapse. A multiscale spatial analysis of 3‐cycle temporal evolution provides quantitative evidence that the most stable, persistent 3‐cycles degrade preferentially in Ω*, until essentially depleted when the shear band is fully formed. The transition towards a clustered distribution of persistent 3‐cycles occurs early in the loading history—and coincides with the persistent localisation of vortices in Ω*. In 3D samples, no evidence of spatial clustering in persistent 3‐cycle deaths is found in samples undergoing diffuse failure, while early clustering manifests in a sample that ultimately failed by strain localisation. This study not only delivered insights into the possible structural origins of vortices in dense granular systems but also a tool for the early detection of the mode of failure—localised versus diffuse—a sample will ultimately undergo. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号