首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
地质学   4篇
  2021年   1篇
  2012年   1篇
  2010年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
We present new U-Pb zircon and monazite ages from the Sunsas belt granitic magmatism in Bolivia,SW Amazonian Craton.The geochronological results revealed four major magmatic events recorded along the Sunsas belt domains.The older igneous event formed a granitic basement coeval to the Rio Apa Terrane(1.95-1.85 Ga)in the southern domain.The second magmatic episode is represented by 1.68 Ga granites associated to the Paraguá Terrane(1.69-1.66 Ga)in the northern domain.The 1.37-1.34 Ga granites related to San Ignacio orogeny represent the third and more pervasive magmatic event,recorded throughout the Sunsas belt.Moreover,magmatic ages of~1.42 Ga revealed that the granitogenesis asso-ciated to the Santa Helena orogeny also affected the Sunsas belt,indicating that it was not restricted to the Jauru Terrane.Lastly,the 1.10-1.04 Ga youngest magmatism was developed during the Sunsas oro-geny and represents the final magmatic evolution related to Rodinia assembly.Likewise,the 1.95-1.85 and 1.68 Ga inherited zircon cores obtained in the~1.3 Ga and 1.0 Ga granite samples suggest strong par-tial melting of the Paleoproterozoic sources.The 1079±14 Ma and 1018±6 Ma monazite crystallization ages can be correlated to the collisional tectono-thermal event of the Sunsas orogeny,associated to reac-tions of medium-to high-grade metamorphism.Thus,the Sunsas belt was built by heterogeneous 1.95-1.85 Ga and 1.68 Ga crustal fragments that were reworked at 1.37-1.34 Ga and 1.10-1.04 Ga related to orogenic collages.Furthermore,the 1.01 Ga monazite age suggests that granites previously dated by zir-con can bear evidence of a younger thermal history.Therefore,the geochronological evolution of the Sunsas belt may have been more complex than previously thought.  相似文献   
2.
Ferralsols are characterized by poorly-defined horizons, weak macrostructure and strong development of a fine granular structure comprising subangular micro-aggregates. In this study, the morphological and physical modifications caused by earthworm activity in a clayey ferralsol were analysed. After describing soil structures, undisturbed samples were taken for evaluating aggregates and determining clod bulk density and particle density. Soil water retention properties were measured and an inventory of soil invertebrate macrofauna was created. The structural and porous transformations were due to aggregates created by earthworm activity. Changes in bulk density can be associated with pore modifications caused by a change in the proportions of aggregate types, and a notable reduction of total porosity was measured, tending to increase soil volume with dense aggregates. Structural modifications affected the topsoil down to 0.5 m and water retention between −1 and −33 kPa, the principal water compartment of these soils.  相似文献   
3.
The Rondonian-San Ignacio Province (1.56–1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent–continent collision. The effects of the collision are well preserved mostly in the Paraguá Terrane (Bolivia and Mato Grosso regions) and in the Alto Guaporé Belt and the Rio Negro-Juruena Province (Rondônia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsás Orogeny (1.25–1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78–1.42 Ga) that hosts Paleoproterozoic basement (1.78–1.72 Ga), and the Cachoeirinha (1.56–1.52 Ga) and the Santa Helena (1.48–1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paraguá Terrane (1.74–1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37–1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51–1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guaporé Belt (<1.42–1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34–1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paraguá Terrane, and the Colorado Complex and the Nova Mamoré Metamorphic Suite in the Alto Guaporé Belt. The Paraguá Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40–1.36 Ga), and the Teotônio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34–1.36 Ga), and the São Lourenço-Caripunas Intrusive Suite (1.31–1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga.  相似文献   
4.
The Sunsás–Aguapeí province (1.20–0.95 Ga), SW Amazonian Craton, is a key area to study the heterogeneous effects of collisional events with Laurentia, which shows evidence of the Grenvillian and Sunsás orogens. The Sunsás orogen, characterized by an allochthonous collisional-type belt (1.11–1.00 Ga), is the youngest and southwesternmost of the events recorded along the cratonic fringe. Its evolution occurred after a period of long quiescence and erosion of the already cratonized provinces (>1.30 Ga), that led to sedimentation of the Sunsás and Vibosi groups in a passive margin setting. The passive margin stage was roughly contemporary with intraplate tectonics that produced the Nova Brasilândia proto-oceanic basin (<1.21 Ga), the reactivation of the Ji-Paraná shear zone network (1.18–1.12 Ga) and a system of aborted rifts that evolved to the Huanchaca–Aguapeí basin (1.17–1.15 Ga). The Sunsás belt is comprised by the metamorphosed Sunsás and Vibosi sequences, the Rincón del Tigre mafic–ultramafic sill and granitic intrusive suites. The latter rocks yield εNd(t) signatures (?0.5 to ?4.5) and geochemistry (S, I, A-types) suggesting their origin associated with a continental arc setting. The Sunsás belt evolution is marked by “tectonic fronts” with sinistral offsets that was active from c. 1.08 to 1.05 Ga, along the southern edge of the Paraguá microcontinent where K/Ar ages (1.27–1.34 Ga) and the Huanchaca–Aguapeí flat-lying cover attest to the earliest tectonic stability at the time of the orogen. The Sunsás dynamics is coeval with inboard crustal shortening, transpression and magmatism in the Nova Brasilândia belt (1.13–1.00 Ga). Conversely, the Aguapeí aulacogen (0.96–0.91 Ga) and nearby shear zones (0.93–0.91 Ga) are the late tectonic offshoots over the cratonic margin. The post-tectonic to anorogenic stages took place after ca. 1.00 Ga, evidenced by the occurrences of intra-plate A-type granites, pegmatites, mafic dikes and sills, as well as of graben basins. Integrated interpretation of the available data related to the Sunsás orogen supports the idea that the main nucleus of Rodinia incorporated the terrains forming the SW corner of Amazonia and most of the Grenvillian margin, as a result of two independent collisional events, as indicated in the Amazon region by the Ji-Paraná shear zone event and the Sunsás belt, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号