首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   9篇
  国内免费   1篇
测绘学   7篇
大气科学   16篇
地球物理   34篇
地质学   76篇
海洋学   16篇
天文学   26篇
自然地理   25篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   13篇
  2015年   3篇
  2014年   5篇
  2013年   12篇
  2012年   11篇
  2011年   4篇
  2010年   13篇
  2009年   18篇
  2008年   16篇
  2007年   15篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   8篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有200条查询结果,搜索用时 0 毫秒
1.
In this paper, an inverse mapping is used to transform the previously-derived analytical solutions from a local elliptical coordinate system into a conventional Cartesian coordinate system. This enables a complete set of exact analytical solutions to be derived rigorously for the pore-fluid velocity, stream function, and excess pore-fluid pressure around and within buried inclined elliptic inclusions in pore-fluid-saturated porous rocks. To maximize the application range of the derived analytical solutions, the focal distance of an ellipse is used to represent the size of the ellipse, while the length ratio of the long axis to the short one is used to represent the geometrical shape of the ellipse. Since the present analytical solutions are expressed in a conventional Cartesian coordinate system, it is convenient to investigate, both qualitatively and quantitatively, the distribution patterns of the pore-fluid flow and excess pressure around and within many different families of buried inclined elliptic inclusions. The major advantage in using the present analytical solution is that they can be conveniently computed in a global Cartesian coordinate system, which is widely used in many scientific and engineering computations. As an application example, the present analytical solutions have been used to investigate how the dip angle of an inclined elliptic inclusion affects the distribution patterns of the pore-fluid flow and excess pore-fluid pressure when the permeability ratio of the elliptic inclusion is of finite but nonzero values.  相似文献   
2.
This article examines contemporary Japanese overseas tourism from a supplier‐side perspective using the concept of production systems. We first outline characteristics of the evolving structure of Japanese overseas tourism, with an emphasis on the global spread of Japanese travel companies. This provides a frame for presenting an empirical account of the transactional relationships in the Japanese package tour production system in Whistler, British Columbia, where Japanese tour operators play a pivotal role. We conclude that the recent expansion of Japanese travel companies is fostering the functional integration of the global tourism production system and exhibits increasing reflexivity.  相似文献   
3.
4.
5.
The hydroxyl stretching frequencies of four phyllosilicates have been measured at high pressures and temperatures using an externally heated diamond-anvil cell and synchrotron infrared spectroscopy. Spectra were measured up to 26, 31, 21 and 8 GPa at room temperature for samples of talc, pyrophyllite, muscovite and 10-Å phase, respectively. Spectra were also measured in the range 273–500 K at ambient pressure for all samples and at 8–9 GPa for talc and pyrophyllite. The frequency of the Mg3OH band in talc increases with pressure due to the absence of hydrogen bonding. The different orientation of the hydroxyl group in pyrophyllite and muscovite leads to hydrogen bonding and a decrease in the frequency of the Al2OH band with pressure. 10-Å phase is approximately equivalent to talc with the addition of interlayer H2O. In a spectrum of a sample synthesised for 143 h, two hydroxyl stretching bands are clearly resolved on compression. One is the same as the Mg3OH band in talc, indicating the presence of intra-layer hydroxyl in a talc-like environment with no hydrogen bonding. The other, which separates from the talc-like band at 1 GPa, is associated with intra-layer hydroxyl that is hydrogen bonded to interlayer H2O. There are equivalent bands in high-pressure spectra of a sample of deuterated 10-Å phase, synthesised for 400 h. This sample shows a greater extent of hydrogen bonding at ambient pressure than the 143 h sample. For all of the phases studied, increasing temperature leads to a decrease in frequency for every hydroxyl stretching vibration, both at low and high pressures. The shifts in frequency with temperature are an order of magnitude greater than the shifts with pressure when normalised to previously measured structural parameters.  相似文献   
6.
7.
Thermodynamic stability constants have been estimated for the complexation of iron(III) with catecholate-type siderophores isolated from the marine bacterium Alteromonas luteoviolacea and from the marine cyanobacterium Synechococcus sp. PCC 7002. Stability constants were determined utilizing the “chelate scale” of Taylor et al. (1994). The scale is based upon a linear relationship between the reduction potentials and the pH-independent thermodynamic stability constants for known iron(III) complexes. Log K values for the alterobactin B ferric iron complex are 43.6 ± 1.5 at pH 8.2 and 37.6 ± 1.2 at pH 6, consistent with a shift from bis-catecholate to monosalicylate/monocatecholate iron coordination with decreasing pH. Synechococcus isolates PCC 7002 Nos. 1 and 3 formed iron(III) complexes with stability constants of approximately 38.1 ± 1.2 and 42.3 ± 1.5, respectively. The binding strengths of the iron(III) complexes examined in this study are quite high, suggesting that catecholate siderophores may play a role in the solubilization and biological uptake of iron in the marine environment.  相似文献   
8.
9.
10.
Surface water flooding (SWF) is a recurrent hazard that affects lives and livelihoods. Climate change is projected to change the frequency of extreme rainfall events that can lead to SWF. Increasingly, data from Regional Climate Models (RCMs) are being used to investigate the potential water-related impacts of climate change; such assessments often focus on broad-scale fluvial flooding and the use of coarse resolution (>12 km) RCMs. However, high-resolution (<4 km) convection-permitting RCMs are now becoming available that allow impact assessments of more localised SWF to be made. At the same time, there has been an increasing demand for more robust and timely real-time forecast and alert information on SWF. In the UK, a real-time SWF Hazard Impact Model framework has been developed. The system uses 1-km gridded surface runoff estimates from a hydrological model to simulate the SWF hazard. These are linked to detailed inundation model outputs through an Impact Library to assess impacts on property, people, transport, and infrastructure for four severity levels. Here, a set of high-resolution (1.5 km and 12 km) RCM data has been used as input to a grid-based hydrological model over southern Britain to simulate Current (1996–2009) and Future (~2100s; RCP8.5) surface runoff. Counts of threshold-exceedance for surface runoff and precipitation (at 1-, 3- and 6-hr durations) are analysed. Results show that the percentage increases in surface runoff extremes, are less than those of precipitation extremes. The higher-resolution RCM simulates the largest percentage increases, which occur in winter, and the winter exceedance counts are greater than summer exceedance counts. For property impacts, the largest percentage increases are also in winter; however, it is the 12-km RCM output that leads to the largest percentage increase in impacts. The added-value of high-resolution climate model data for hydrological modelling is from capturing the more intense convective storms in surface runoff estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号