首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2782篇
  免费   188篇
  国内免费   84篇
测绘学   106篇
大气科学   177篇
地球物理   741篇
地质学   1396篇
海洋学   162篇
天文学   275篇
综合类   32篇
自然地理   165篇
  2024年   6篇
  2023年   18篇
  2022年   72篇
  2021年   84篇
  2020年   88篇
  2019年   100篇
  2018年   204篇
  2017年   185篇
  2016年   235篇
  2015年   133篇
  2014年   253篇
  2013年   280篇
  2012年   131篇
  2011年   173篇
  2010年   135篇
  2009年   149篇
  2008年   111篇
  2007年   81篇
  2006年   89篇
  2005年   51篇
  2004年   44篇
  2003年   49篇
  2002年   48篇
  2001年   31篇
  2000年   30篇
  1999年   12篇
  1998年   20篇
  1997年   19篇
  1996年   14篇
  1995年   13篇
  1994年   25篇
  1993年   13篇
  1992年   17篇
  1991年   12篇
  1990年   6篇
  1989年   12篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   8篇
  1984年   7篇
  1983年   9篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1977年   5篇
  1975年   9篇
  1974年   5篇
  1973年   5篇
排序方式: 共有3054条查询结果,搜索用时 46 毫秒
1.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
2.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
3.
This paper presents a second-order work analysis in application to geotechnical problems by using a novel effective multiscale approach. To abandon complicated equations involved in conventional phenomenological models, this multiscale approach employs a micromechanically-based formulation, in which only four parameters are involved. The multiscale approach makes it possible a coupling of the finite element method (FEM) and the micromechanically-based model. The FEM is used to solve the boundary value problem (BVP) while the micromechanically-based model is utilized at the Gauss point of the FEM. Then, the multiscale approach is used to simulate a three-dimensional triaxial test and a plain-strain footing. On the basis of the simulations, material instabilities are analyzed at both mesoscale and global scale. The second-order work criterion is then used to analyze the numerical results. It opens a road to interpret and understand the micromechanisms hiding behind the occurrence of failure in geotechnical issues.  相似文献   
4.
The cosmological, astrophysical, and nucleocosmochronological methods for estimating the age of the universe and the corresponding uncertainties are comparatively studied in the present paper. We are led to the conclusion that the new measurements of cosmological parameters, and the recent estimates of the age of globular clusters have led to the gradual disappearance of the age problem from the arena of modern cosmology.  相似文献   
5.
6.
7.
The Saclay solar evolution code is used to check the effect of WIMPs on solar evolution. In this paper we study the effects of various types of Cosmion-matter interactions, give constraints on the crosssections compatible with the measured neutrino rate of 2 SNU on chlorine, and relate these constraints to ongoing dark matter detection experiments.Unité associée au CNRS UA 280, F-75251 Paris Cedex 05, France.On leave from LPC, Collège de France.  相似文献   
8.
The question of positioning the optical counterparts of the ICRF quasars is outlined in the perspective of future space astrometry missions, which ultimately will bring a new realization of the ICRS in the optical range. Ground-based interferometry with a dual-field observing mode (PRIMA/VLTI),together with the missions DIVA and FAME, will have a key role in building an extragalactic reference frame in the optical/near-IR range with about the same accuracy as that of the present (VLBI) primary frame. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
To emphasize the rotational effects of a simple friction between colliding bodies in a keplerian field we investigate numerically the evolution of the rotational energies in a three dimensional system of spherical particles interacting through inelastic collisions in a deterministic model. All the particles are made of the same material but they possibly have different sizes. Each collision reduces the relative surface velocity and there are exchanges between orbital energy and rotational energy. Our results are compared with some previous papers and our aim is to supply other probabilists models with simple basic references about mean dynamical properties.The rotational energy of the colliding bodies tends to reach an equilibrium state that depends only on the rate of energy loss in the collision process. Internal rotations prevent the complete flattening of the system. With this model, light and small particles spin faster than the massive and big ones. We observe an excess of prograde rotations on counterclockwise orbits. The ratio of rotational and orbital energies is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa% aaleaacaWGYbaabeaakiaac+cacaWGfbWaaSbaaSqaaiaadUgaaeqa% aOGaeyisISRaaGymaiaaicdadaahaaWcbeqaaiabgkHiTiaaiodaaa% aaaa!3F83!\[E_r /E_k \approx 10^{ - 3} \] while the ratio of corresponding mean angular velocities is % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaaWaaeaacq% aHjpWDaiaawMYicaGLQmcacaGGVaWaaaWaaeaacqGHPoWvaiaawMYi% caGLQmcacqGHijYUcaaIYaaaaa!4008!\[\left\langle \omega \right\rangle /\left\langle \Omega \right\rangle \approx 2\] These values depends strongly on the dimensional scale of the model.  相似文献   
10.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号