首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
地球物理   5篇
地质学   25篇
  2006年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   7篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
Earthquake hazard maps for Syria are presented in this paper. The Peak Ground Acceleration (PGA) and the Modified Mercalli Intensity (MMI) on bedrock, both with 90% probability of not being exceeded during a life time of 50, 100 and 200 years, respectively are developed. The probabilistic PGA and MMI values are evaluated assuming linear sources (faults) as potential sources of future earthquakes. A new attenuation relationship for this region is developed. Ten distinctive faults of potential earthquakes are identified in and around Syria. The pertinent parameters of each fault, such as theb-parameter in the Gutenberg-Richter formula, the annual rate 4 and the upper bound magnitudem 1 are determined from two sets of seismic data: the historical earthquakes and the instrumentally recorded earthquake data (AD 1900–1992). The seismic hazard maps developed are intended for preliminary analysis of new designs and seismic check of existing civil engineering structures.  相似文献   
2.
Several theoretical, empirical and semi-empirical methods are available in the literature to predict settlement of drilled shafts in sandy soils. In the Arabian Gulf countries, specifically in the United Arab Emirates, equations and procedure from the rest of the world are being used in analysis and design of drilled shafts without proper validation. It is the aim of this study to assess the applicability and evaluate the accuracy of two well known, and commonly used methods for pile prediction in the United Arab Emirates (UAE), namely Vesic (1977) and Poulos (1979), via comparison with data from field pile load tests conducted on shafts drilled in the region. Some of these tests were conducted for the purpose of this study, while others were made available through the courtesy of International Piling Contractors who are active in the region (e.g. Bauer International and Swiss Borings). Pile load test data were analyzed to back-calculate the model parameters related to settlement under different loading stages. Geological data and soil properties were obtained from studies conducted at the relevant sites. An effort is made to correlate soil properties with the prediction models. Statistical analysis is conducted to assess the accuracy of the results obtained from the two methods at different stages of loading via those obtained from pile load tests. Moreover, a detailed parametric study is conducted to assess the effect of the related parameters on the predicted pile settlement and the estimated settlement at different stages of loading. The study concluded with a recommendation of the most appropriate models and procedures to be followed for predicting the settlement of drilled shafts in the UAE, together with useful charts and correlation relations. Results showed that settlement values predicted by Vesic (1977) and Poulos (1979) overestimates the true values. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
An analytical model is developed to analyze the seismic response of gravity walls retaining and founded on dry sand, with special emphasis on tilting behaviour. A well verified two-dimensional finite element code is used for this purpose. The analytical model is verified by comparing predictions to results from three dynamic centrifuge tests, with satisfactory agreement. Moreover, sensitivity analyses are carried out for one of the centrifuge test conditions to understand how the results would change if the boundary conditions and rotational stiffness of the wall were changed.  相似文献   
4.
Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure.The probabilistic models evaluate the probability of failure under seismic loading considering the different sources of uncertainties involved in the problem. The models also take into consideration the spatial variabilities and correlations of soil properties. The developed models are incorporated in a computer program PTDDSSA.These analysis/design procedures are incorporated within a code named SARETL developed in this study for stability analysis and remediation of earthquake triggered landslides. In addition to the dynamic inertia forces, the system takes into consideration local site effects.The code is capable of assessing the landslide hazard affecting major transportation routes in the event of earthquakes and preparing earthquake induced landslide hazard maps (i.e., maps showing expected displacements and probability of slope/embankments failure) for different earthquake magnitudes and environmental conditions. It can also beused for proposing a mitigation strategy against landslides.  相似文献   
5.
Many free and forced vertical vibrations tests were conducted on surface and embedded models for footings on dry and moist poorly graded sand that has the following properties: D10 = 0·21 mm, D30 = 0·305 mm, D60 = 0·423 mm, Cu = 2, Cc = 1·05, Gs = 2·66, γmax = 1·74 cm−3 and γmin = 1·4 g cm−3. The tests were conducted at relative density Dr = 82%. The effect of mass, area, geometry, embedment, saturation, load amplitude and frequency were studied. For this purpose square, rectangular and circular models of concrete footings were chosen. Swieleh sand was chosen as the foundation soil. Results have been obtained for models having different mass, same base shape and area; models of different base area and equal base shape and mass; and models of different base shape geometry and about equal masses and base areas.Forced vertical vibration tests results showed an increase in natural frequency and a reduction in amplitude with the increase in embedment depth, degree of saturation and footing base area. Increasing the mass of model footing resulted in a decrease in the natural frequency while the dynamic response increased. Also, results showed that the circular model footing gives low values of dynamic response in comparison to other models.Free vertical vibration test results showed an increase in damping ratio with increase in the base area of the model footing, depth of embedment and saturation of sand. On the other hand, the results showed a decrease in damping ratio with increase in the footing mass. Circular footing gives the highest value of damping ratio among other footings.Results showed that the best method for evaluating the dynamic stiffness for vertical vibration is using Dobry and Gazetas1 (J. Geotech. Engng, ASCE, 1986, 112, 109–133) equations together with the formula proposed by Ronald and Bojan2 (J. Geotech. Engng, ASCE, 1995, 121, 274–286) for evaluating the equivalent shear modulus.  相似文献   
6.
The axial base and skin capacities of piles bored in cohesion less soils are often estimated using empirical, semi-empirical and theoretical methods. The aim of this paper is to assess the applicability and evaluate the accuracy of different predictions methods available in the literature, via comparison with data from 43 field pile load tests conducted on shafts drilled in the region of the United Arab Emirates. Janbu's theoretical method (1989) with the parameter (=75°) and Vesics theoretical method (1975) yielded accurate predictions for the base resistances. Burlands approach (1973) overpredicts the skin capacities with an average predicted-to-estimated ratio (q p /q e) of three times greater than the unity while using values of the coefficient of earth pressure (k=05k o ) and the angle of soil-pile friction (=23).  相似文献   
7.
 The establishment of comprehensive development plans, in general, and the proper selection of highway routes, in particular, require an assessment of landslides or instability hazards in the project sites. The frequent landslides that occurred along the routes of major highways in Jordan, and particularly along the Amman-Na'ur-Dead Sea highway and Irbid-Jerash-Amman highway, have substantially increased the cost of construction and caused a considerable delay in the completion of work. The study of many landslides that occurred in the last 25 years along the highway routes and in the sites of some major civil engineering projects in Jordan has led to the recognition of major factors that affect the stability of slopes, and thus the safety and economics of these projects. The geological formation, structural features, topographic characteristics, geometry, and climatic conditions were adopted as the basis for the classification of terrains in terms of their stability. Each factor has been assigned a rating to indicate its relative contribution to the overall stability according to engineering judgment and past experience. The areas have been classified into 5 groups according to their total stability rate. The simplicity, comprehensiveness, and accuracy are the main characteristics of the proposed classification. Its significance stems from its helpfulness as a guide to the geotechnical and highway engineers in assessing the overall stability of the alternative routes of proposed highway projects. Received: 3 December 1996 · Accepted: 29 April 1997  相似文献   
8.
Modelling the effect of rainfall on instabilities of slopes along highways   总被引:1,自引:0,他引:1  
 During and after the very wet 1991/1992 winter experienced in Jordan, significant instabilities occurred in several sections of the new Irbid–Amman Highway in Jordan. A potential impact of surface and subsurface flow on the failed areas was noted. This paper is concerned with a hydrological study of the Irbid–Amman Highway, including watershed characteristics, hydrological data analysis, and hydraulic analysis of remedial works to failed areas and other parts of the highway drainage to minimize the impact of surface runoff and the effects of subsurface water with respect to the stability of the upslope and to limit the porewater pressure within the road formation. The study shows that the culvert capacity and the discharge velocity of the cross-highway drainage are deficient. Recommendations (e.g. gabion cascades) are therefore suggested to reduce drainage to the cross highway drainage structures. Grouting is suggested to stabilize the embankments above the inlets to culverts. Remedial drainage works are suggested for each major failed area. These include: culverts, table drain, drainage blanket beneath road formation, cut-off drains above cuttings, subsurface drains into the cut in the vicinity of springs, curtain drain beneath the lined table drain, and others. Received: 26 March 1997 · Accepted: 23 March 1998  相似文献   
9.
A landslide occurred in colluvial deposits at one of the lagoons of Wadi Es-Sir Sewage Treatment Plant Project (under construction) in Jordan. This paper summarizes the geotechnical investigations conducted at three lagoon sites in the project area including the failed lagoon. Results of stability analyses are presented along with recommendations to stabilize the slided lagoon and surrounding areas.  相似文献   
10.
A Probabilistic method is used to evaluate the seismic hazard of nineteen embankment dam sites in Jordan. A line source model developed by McGuire (1978) is used in this study. An updated earthquake catalogue covering the period from 1 A.D. to 1991 A.D. is used for this purpose. This catalogue includes all earthquakes that occurred in Jordan and adjacent areas, more specifically between latitudes 27.0°–35.5° N and longitudes 32.0°–39.0° E.Nine distinct seismic sources of potential seismic activities are identified. The seismic hazard parameters are determined using the method suggested by Kijko and Sellevoll (1989).The Peak Ground Acceleration (PGA) is selected as a measure of ground motion severity. Esteva (1974) attenuation relationship is used in evaluating PGA values at each dam site. Analysis is carried out for 50%, 90%, and 95% probability that is not being exceeded in a life time of 50, 100, and 200 years.Results of analysis indicate that PGA values are higher for dam sites closer to the Dead Sea Fault. This fault is believed to be responsible for most earthquake activities in Jordan and vicinity. The highest PGA value is found to be for Al-Karama dam site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号