首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   4篇
  国内免费   1篇
地球物理   2篇
地质学   11篇
海洋学   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1991年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
Flow in upper-mantle rocks: Some geophysical and geodynamic consequences   总被引:1,自引:0,他引:1  
Flow mechanisms effective in the upper mantle and some of the parameters of the creep equation are determined from the study of peridotites from basalt and kimberlite xenoliths and alpine-type massifs. Creep controlled by dislocation climb, as inferred by Weertman, is the dominant mechanism. Evidence for superplastic flow is found in the deepest kimberlite xenoliths. Flow in the alpine-type massifs is ascribed either to intrusion in the crust when continental plates collide (lherzolite massifs) or to sea-floor spreading (harzburgite massifs included in ophiolites). The consideration of textures, crystal substructures and preferred orientations connected with P,T equilibrium conditions derived from pyroxenes, helps in deciphering the large-scale structure and flow of peridotites in the crust and in the mantle down to 200 km. For the first 150 km, the representative structures are those of the basalt xenoliths and the kimberlite xenoliths with a coarsegrained texture. They have many features in common and probably represent a static lithosphere with, in basalt xenoliths, possible evidence for the transition to the shear flowing asthenosphere. The porphyroclastic and mosaic-textured xenoliths, in kimberlites equilibrated at depth between 150 and 200 km and a few more superficial basalt xenoliths, reflect a much larger strain rate and applied stress and might be connected to vertical instabilities also responsible for magma genesis.  相似文献   
2.
3.
The Oman‐Emirates is the largest and best‐exposed ophiolite; consequently, it has attracted significant interest among scientists, together with serious conflicts. Most geologists regard this ophiolite as having formed in an intra‐oceanic subduction zone before being accreted to the Arabian continent. Here, we propose an alternative scenario, supported by detailed field observations and integrated geophysics. The smaller Emirates part of the ophiolite was forced into a nearby continent, in the pre‐collision stage of Tethyan closure. The contraction led to the exhumation of the mantle floor of segmented basins accreted in a rifted system similar to the present‐day Gulf of California. The implied high temperature–high pressure metamorphism and the range of geochemical signatures were introduced during the process of rifting, whereas the larger Oman ophiolite was emplaced by obduction onto and along the subducting continental shore. This Ridge–Trench–Transform system might call for a new process to obduct over continents in particular Tethyan ophiolites.  相似文献   
4.
Field data in the Oman ophiolite show that the Moho transition zone (MTZ), which is on average 300 m thick above mantle diapirs, reduces to 50 m away from diapirs, with a sharp transition at the outskirts of the diapirs. We show here that this reduction is dominantly due to compaction of a dunitic mush present above diapirs in the MTZ, with upward injection of a wehrlitic magma in the crust, and, to a lesser extent, due to tectonic stretching. In order to explain the fraction of wehrlites injected into the crust, which is in the range of 25%, it is necessary that mantle upwelling is active, with a mantle flow velocity away from diapirs several times faster than the spreading velocity. If this velocity exceeds 5 times the ridge spreading-rate, a significant part of the MTZ may be entrained down into the mantle, flowing away from the diapir as tabular dunites.  相似文献   
5.
For the first time, the crystallized remnant of an oceanic ridge magma chamber is documented in the Oman ophiolite. It exists in the centre of a 40 km long monoclinal ridge (Jebel Dihm, Wadi Tayin massif), exposing a full crustal section perpendicular to the spreading direction. New detailed mapping supported by U‐Pb zircon geochronology suggests that the active, fast‐spreading ridge that died just prior to detachment of the ophiolite is preserved and largely intact. Our observations provide insights into the crystallizing mush zone of a magma chamber, before it crosses the external walls and solidifies as deformed gabbros. Our data provide new constraints on the shape and internal dynamics of a magma chamber, including gabbro subsidence from the floor of a perched melt lens and the limited contribution of sills to crustal accretion. By locating precisely the palaeo‐ridge axis, prior full spreading rate estimates can be increased to ~140 km Ma?1.  相似文献   
6.
A comprehensive model for the activity of the elementary accretion segment at fast‐spreading ridges relies on integration of structural data from the Oman ophiolite and geophysical results from the East Pacific Rise (EPR) around 9°N, which are of comparable size and spreading rates. The axial melt lens at shallow crustal level provides a link between Deval segmentation at the seafloor and a lower melt sill at Moho level, imaged at the EPR as a crustal melt zone (CMZ) and mapped in Oman as the Moho transition zone (MTZ). Both are attached to a mantle upwelling at the EPR, and to a frozen diapir in Oman. The physical link between diapiric mantle uprising at the Moho and Devals segmentation at the seafloor is the melt being injected from the mantle into the lower MTZ, ponding there, and then being released by powerful injections into the upper melt lens. The magma chamber covers the diapir at a distance of 5 km from the ridge axis.  相似文献   
7.
In the Oman ophiolite, the large scale Makhibiyah shear zone, in Wadi Tayin massif was generated with no or little relative motion between the two adjacent blocks, in contrast with what is reported from otherwise similar shear zones in deep crust and upper mantle. This shear zone is asymmetrical with, along one margin an asthenospheric mantle (~1200 °C) and along the adjacent margin, a lithospheric mantle (~1000 °C). Within the hotter side and with increasing shear strain, horizontal flow lines smoothly swing towards the shear zone direction before abutting against the wall of the lithosphere side. Profuse mafic melts issued from the hotter mantle are frozen in the shear zone by cooling along this lithospheric wall. Tectonic and magmatic activities are entirely localized within the asthenospheric compartment. Mantle flow lines were rotated, during their channelling along this NW‐SE shear zone, in the NW and SE opposite directions. Depending on whether the flow lines are deviated NW or SE, dextral or sinistral shear sense is recorded in the shear band mylonitic peridotites. This demonstrates that the shear zone was not generated by strike‐slip motion, a conclusion supported by regional observations.  相似文献   
8.
Following the discovery of a high temperature (HT) (∼800 °C) and a very high temperature (1000 °C) hydrothermal alteration in the crust of the Oman ophiolite, a systematic structural and petrological study was conducted throughout the entire ophiolite, with supporting isotopic geochemistry. The published results showed that the crustal gabbros are extensively altered down to Moho by a large seawater flux, which was channelled through an identified recharge and discharge circuit. Microcracks, constituting the recharge system, propagated through the hot gabbros, accreting at the ridge and, in spite of their submillimetre width, provided the conduit for the large volume of seawater necessary for the observed alteration. Building on these results, we show here that these microcracks opened and were active over a time of a few tens of thousands years, while the newly accreted gabbros were drifting away from the ridge. Microcrack activity was highly episodic, with bursts of seawater ingression lasting a few days to a few weeks, followed by quiescence periods of a few tens of years. This model of HT, oceanic hydrothermal alteration has several implications concerning fast spreading oceanic ridges.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号