首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   3篇
地质学   6篇
  2023年   4篇
  2020年   1篇
  2019年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
华北克拉通在中奥陶世至晚石炭世期间一直出露地表,经历了长期的风化作用,形成大规模的铁-铝黏土矿,其成矿物源一直是研究的热点,尤其是本溪组底部铁矿和铁质黏土矿与上部铝黏土矿是否为同一来源尚未查清。本研究选取克拉通南缘大安铝黏土矿床作为研究对象,展开微区矿物及元素地球化学组成分析,进一步探讨铁-铝黏土矿物质来源。大安矿床内含矿岩系自下而上包括铁质黏土岩、铝土矿、铝质黏土矿;局部喀斯特高地缺失铝土矿,铝质黏土矿直接覆盖于铁质黏土岩之上。铁质黏土岩在洼地以菱铁矿、黄铁矿和伊利石为主,在隆起区以赤铁矿、伊利石和高岭石为主。铝土矿以硬水铝石、伊利石和锐钛矿为主;铝质黏土矿主要矿物为伊利石。矿物微区分析在黏土矿底部发现大量的碳化硅和少量自然硅、硅铁矿、铬铁矿;区域对比揭示北秦岭造山带内商丹缝合带和二郎坪群中的蛇绿岩为铝黏土矿形成提供了成矿物质。本溪组底部铁质黏土与上部铝黏土矿稳定元素比率(例如Zr/TiO2、Hf/TiO2、Nb/TiO2、Ta/TiO2)存在明显差异,揭示二者为不同来源: 底部铁质黏土岩和铁矿层为底板碳酸盐岩原地风化的产物;而上部铝黏土矿是异地搬运物,北秦岭造山带在晚石炭世的整体抬升为华北铝黏土矿形成提供了重要的成矿物质。  相似文献   
2.

华北克拉通在中奥陶世至晚石炭世经历了强烈的风化和喀斯特化作用, 并在晚石炭世形成大规模喀斯特型铝土矿, 但是其物质来源及成矿过程目前仍存争议。本文选取华北南缘仁村大型喀斯特型铝土矿床, 在矿床地质剖析基础上, 对两个钻孔岩心进行矿物学、地球化学、碳-氧同位素分析, 剖析了成矿物质来源和成矿环境条件, 总结了铝土矿形成过程。仁村铝土矿含矿岩系赋存于奥陶系灰岩风化面之上的石炭系本溪组中, 含矿岩系自下而上包括铁质粘土岩、铝土矿和粘土岩。X衍射和扫描电镜-能谱分析显示铁质粘土岩主要矿物为菱铁矿和伊利石, 铝土矿主要矿物为硬水铝石、黄铁矿、菱铁矿、锐钛矿、伊利石和高岭石, 而粘土岩主要矿物为高岭石和勃姆石。铁质粘土岩元素组成以SiO2、FeO、Al2O3为主, 铝土矿以Al2O3、SiO2、FeO、TiO2为主, 而粘土岩主要为SiO2。微量元素Zr、Hf、Nb、Ta、Th和U等在含矿岩系呈现整体富集, 稀土元素主要在铝土矿层底部富集。硬水铝石-黄铁矿-菱铁矿矿物集合体、铝土矿层中Ce异常、La/Y和(La/Yb)N比值以及菱铁矿C-O同位素组成(δ13C: -11.35‰~-7.63‰; δ18O: -9.26‰~-5.93‰)揭示铝土矿主要形成于地表碱性-还原的喀斯特洼地环境, 微生物广泛参与成矿过程。微量-稀土元素组成及稳定元素比率显示含矿岩系成矿物源存在明显垂向变化。其中, 底部铁质粘土岩主体为底板碳酸盐岩原地风化形成, 而顶部铝土矿和粘土岩为异地来源。综合前人研究成果, 提出了华北南缘石炭系本溪组铝粘土矿三阶段形成过程: 早期风化阶段(450~320Ma)形成铁质粘土岩或铁质风化壳; 物源输送阶段(320~310Ma)堆积大规模成矿物质; 成矿及后生改造阶段(< 310Ma)形成大规模铝粘土矿。

  相似文献   
3.
马遥  刘学飞  梁亚运  杨溢 《岩石学报》2019,35(5):1566-1582
胶东地区广泛发育早白垩世中-酸性脉岩群,但是其成因演化及成岩地质背景至今仍存在诸多争论。本文利用电子探针(EMPA)与激光剥蚀电感藕合等离子质谱(LA-ICP-MS)技术分析了胶东早白垩世石英闪长脉岩与闪长脉岩中主要造岩矿物(斜长石和黑云母)的主、微量元素组成;并结合岩石地球化学特征,对两者的岩浆源区和岩浆演化进行了研究探讨。石英闪长脉岩与闪长脉岩中黑云母低于检测线的Ca O含量与斜长石主量元素之间良好的线性关系指示两者为未受到后期变质作用影响的原生矿物,进一步说明胶东中生代石英闪长脉岩与闪长脉岩岩浆形成后,在上涌成岩过程中未受到变质作用的影响。石英闪长脉岩中壳源黑云母矿物成分基本一致的,以及斜长石正环带中核边部线性变化的An值与Fe、Mg、Sr、Ba等不相容元素特征指示石英闪长脉岩源于华北克拉通东部古老的加厚下地壳部分熔融作用,并在岩浆演化早期和晚期有一定幔源镁铁质岩浆混入,整个岩浆演化过程并未受到大气、俯冲、变质流体混入或构造作用的影响。闪长脉岩中黑云母矿物较大的Fe2+/(Fe2++Mg)比值范围,Al含量与结晶压力高度正相关以及斜长石中不相容元素特征指示本次研究中胶东闪长脉岩源自俯冲的板片来源的流体或沉积物混入所形成富集岩石圈地幔源区。胶东早白垩世石英闪长脉岩与闪长脉岩形成的大地构造动力学背景为古太平洋板俯冲-回撤引起热-机械侵蚀,进而导致岩石圈地幔减薄。在此情况下软流圈地幔上涌加热导致胶东富集岩石圈地幔部分熔融形成地幔熔体。这些幔源熔体经历分离结晶形成早白垩世闪长脉岩。此外,幔源镁铁质岩浆持续加热导致加厚下地壳部分熔融,形成了石英闪长脉岩。  相似文献   
4.
地下水地源热泵系统优点突出,但由于系统运行过程中对地下水的水位、水温、水质有一定的影响,因此,地下水地源热泵系统开发利用对工程场地地质环境影响的研究十分必要。选取关中地区某学校地下水地源热泵系统工程及陕南地区某小区售楼部地下水地源热泵系统工程,通过监测工程运行期间地下水温度、水位和水质动态数据,分析地下水地源热泵系统开发利用过程中对地质条件的影响。结果显示:当工程采灌平衡时,地下水位恢复迅速,地下水地源热泵工程长期运行不会对区域地下水位产生明显的改变;在一个完整的供暖、制冷年内地下水回灌井从井口至井底不同深度地下水温度均处于平衡状态;工程运行过程中水质常规阴阳离子、总硬度、总碱度、总溶解性固体、pH值和水化学类型没有明显的改变,有毒物质中的氰化物、汞离子、砷离子、铅离子、铬离子、挥发酚、铜离子一直处于检出限以下,仅有锌离子浓度受工程运行有一定变化。论文通过分析地下水地源热泵系统开发利用对工程场地地质条件影响,为地下水地源热泵系统的科学推广应用提供技术支撑。  相似文献   
5.

喀斯特型铝土矿中硬水铝石的成因机制对准确认识该矿床的成因至关重要, 也是业界长期争论的焦点。早期普遍认为风化作用阶段形成的三水铝石经历后期压实变质作用脱水形成硬水铝石, 然而近期大量研究显示自然界铝土矿中硬水铝石多为地表喀斯特型环境下结晶形成。华北晚石炭世发育大规模硬水铝石型喀斯特铝土矿, 本文选取华北北部艾雨头大型铝土矿床为研究对象, 在翔实的矿床地质研究基础上, 借助X射线粉末衍射(XRD)、扫描电镜-能谱分析(SEM-EDS)及激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术, 探索硬水铝石的地表结晶条件和铝土矿的形成过程。艾雨头铝土矿含矿岩系剖面自下而上依次包括铁质粘土岩、铝土矿和粘土岩, 其中: 铁质粘土岩矿物组成主要为伊利石、高岭石、针铁矿、赤铁矿、硬水铝石和锐钛矿; 铝土矿主要为硬水铝石、高岭石、赤铁矿、针铁矿和锐钛矿; 粘土岩为高岭石、针铁矿、赤铁矿和锐钛矿。艾雨头喀斯特铝土矿顶底板岩石未发生变质作用, 而且原位分析显示硬水铝石中含有较高含量的Si、Fe、Ti、Cr、V、Pb等元素, 指示硬水铝石为表生沉淀成因。矿石中发现硬水铝石与赤铁矿和针铁矿密切共生, 表明硬水铝石可在氧化条件下形成(Eh>0.2)。硬水铝石中氧化还原敏感元素间良好的线性关系(包括V/Mn-Cr/Mn、V/Fe-Cr/Fe、V/Fe-U/Fe和U-Cr)以及V、Cr、U元素的共同富集, 指示硬水铝石沉淀时氧化还原阈值为T1-T3(即低氧-还原环境(-0.4 < Eh < 0.4))。硬水铝石中较高含量的Fe元素以及与硬水铝石共生的赤铁矿和针铁矿中较高含量的Al元素反映成矿前期已形成了大量的铁铝固溶体(AlxFe1-x(OHy)3-y)。这些不稳定的铁铝固溶体在成岩阶段转变为含铁硬水铝石(Fe-AlOOH)和含铝针铁矿、赤铁矿(Al-FeOOH、Al-Fe2O3); 含铁硬水铝石在后期压实成岩过程中进一步转变为硬水铝石。该研究结果解释了艾雨头铝土矿中硬水铝石地表大规模结晶的基本条件和过程, 对全面认识华北喀斯特铝土矿具有重要意义。

  相似文献   
6.
华北克拉通胶东金矿区是中国最大的黄金产区之一,探明黄金资源储量超过5000 t。蚀变岩型金矿床作为该区域重要的矿床成因类型,长期备受关注,然而在成矿流体属性和成矿物质来源等方面仍然存在争议。本文通过对胶东地区西北部典型蚀变岩型金矿床(以仓上金矿床为例)黄铁矿进行LA-ICP-MS分析,探讨该矿床成矿流体属性和物质来源,为深化认识成矿过程提供新的制约。结果显示,仓上金矿床黄铁矿Se元素含量相对较低(平均值1.601×10-6),指示其可能主要由沉积变质作用形成的。Au/As比值指示第Ⅱ和第Ⅲ成矿阶段黄铁矿内的Au以晶格金的形式(Au+)赋存。结合前人对于胶东金矿区流体性质的研究成果,仓上金矿床黄铁矿相对均一的Co/Ni比值与Ag含量的大幅度增加,综合指示矿床成矿流体主要是岩浆水,同时也有一定的地层水与大气降水参与。Te元素含量较低反映成矿物质主要来源于地幔的可能性比较小。然而较低的Co、Ni含量显著不同于岩浆成因黄铁矿特征,指示成矿物质中可能混入了少量的地幔组分。结合胶东成矿期(约120 Ma)的构造事件与岩浆作用,认为成矿物质Au可能源于中生...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号