首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   2篇
地质学   8篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
青藏铁路多年冻土区含融化夹层路基的热状态   总被引:1,自引:1,他引:0  
基于青藏铁路K1496+750监测断面含融化夹层路基长达10 a的地温监测数据,分析了在气候转暖及工程活动下天然场地及路基左右路肩下多年冻土热状态年变化过程、融化夹层的年变化过程及其对多年冻土热状态的影响。结果表明:监测断面天然场地、左右路肩下多年冻土上限逐年下降,热稳定性逐年降低;观测期内,左路肩下发育有融化夹层,融化夹层厚度在波动中呈增厚趋势,且其增厚主要是由多年冻土人为上限下降所致,而天然场地及右路肩下未发育融化夹层;多年冻土上限附近土体热积累显著,进而导致多年冻土上限逐年下降及其附近土体温度逐年升高,弱化了多年冻土的热稳定性;后期增加的块石护坡和热管两种具有“主动冷却”效能的工程补强措施很好的改善了路基的热稳定性,右路肩经工程补强措施后,多年冻土人为上限得到显著抬升,热稳定性得到显著改善,而左路肩由于融化夹层的存在,工程补强措施仅仅维持了当前多年冻土热状态,融化夹层的存在一定程度上弱化了工程补强措施所产生的冷却效能。  相似文献   
2.
青藏铁路多年冻土区路基变形特征及其来源   总被引:3,自引:0,他引:3  
基于青藏铁路多年冻土区34个路基监测断面2005-2011年的变形与地温资料,分析路基的变形特征及其来源。监测结果表明:①监测期累计变形量大于100 mm的断面均为普通路基,其变形主要来自路基下部因冻土上限下降而引起的高含冰量冻土的融沉变形以及融土的压密变形,其次为路基下部多年冻土因地温升高而产生的高温冻土的压缩变形。②监测期累计变形量小于100 mm的普通路基与块石结构路基断面,其变形主要来自路基下部多年冻土的压缩变形。③总体而言,块石结构路基变形量明显小于普通路基,从而验证了主动冷却措施的长期有效性。其研究结果可为冻土区路基稳定性判断及病害预警提供数据支持。  相似文献   
3.
多年冻土南界附近青藏铁路路基下的冻土退化   总被引:1,自引:0,他引:1  
基于2006-2012年青藏铁路多年冻土区唐古拉山南侧安多断面地温监测资料,分析了多年冻土南界附近路基下多年冻土的退化过程及其影响因素.结果表明:该监测断面天然场地多年冻土退化表现为多年冻土天然上限下降与多年冻土地温升高,观测期内多年冻土天然上限下降0.29 m,下降速率为4 cm·a-1;路基下10 m处多年冻土温度升高0.03℃,升温速率为0.004℃·a-1.该监测断面路基左路肩下多年冻土退化表现为多年冻土人为上限下降、多年冻土地温升高、多年冻土下限抬升以及多年冻土厚度减少.观测期内多年冻土人为上限下降0.41 m,下降速率为6 cm·a-1;路基下10 m处多年冻土地温升高0.06℃,升温速率为0.009℃·a-1;多年冻土下限抬升0.50 m,抬升速率为7 cm·a-1;多年冻土厚度减少0.90 m,减少速率为13 cm·a-1.工程作用是导致路基下多年冻土退化的主要原因,气温升温与局地因素中的冻结层上水发育促进了这一退化过程.路基下融化夹层的出现,导致多年冻土垂向上由衔接型变为不衔接型.  相似文献   
4.
非贯穿型热喀斯特湖下部及其周围多年冻土特征   总被引:4,自引:4,他引:0  
基于对青藏高原北麓河盆地天然形成的湖塘下部及其周围地温的监测分析, 结果表明该湖塘为非贯穿型热喀斯特湖. 湖塘下部多年冻土上限变化较大, 湖岸过渡带及天然场地多年冻土上限基本保持不变. 随着远离湖塘中心, 湖塘下部及其周围多年冻土含冰量依次升高, 地温年变化深度依次降低, 年平均地温依次降低. 观测期内, 湖塘下部浅层多年冻土地温在逐渐升高, 深部土体地温基本保持不变; 湖岸过渡带及天然场地下部多年冻土地温基本保持不变. 天然场地多年冻土地温明显低于湖塘下部土体地温.  相似文献   
5.
青藏铁路路基下融化夹层特征及其对路基沉降变形的影响   总被引:1,自引:0,他引:1  
基于青藏铁路多年冻土区路基地温与变形现场监测资料, 研究了青藏铁路路基下融化夹层特征及其对路基沉降变形的影响. 结果表明:在已有监测场地中, 青藏铁路沿线天然场地融化夹层发育较少, 而路基下融化夹层发育较多. 低温冻土区路基下融化夹层能够逐渐完全回冻使其消失, 高温冻土区大部分路基下融化夹层有进一步发展的趋势. 当融化夹层下部为高含冰量冻土时, 融化夹层与路基沉降变形关系密切, 路基易产生较大的沉降变形; 当融化夹层下部为低含冰量冻土时, 路基沉降变形较小.  相似文献   
6.
基于青藏铁路沿线P32和P33监测断面连续10年的含融化夹层路基的地温和变形场地实测数据,分析了该两处监测断面左路肩下多年冻土人为上限、季节冻结最大深度、融化夹层厚度及多年冻土人为上限附近地温的年变化过程;同时分析了P32和P33监测断面左右路肩的总沉降年变化过程、P32监测断面左路肩地温场对变形的影响及P33监测断面左右路肩地温场差异对左右路肩差异沉降的影响。结果表明:P32和P33监测断面左路肩下多年冻土人为上限逐年下降、季节冻结最大深度基本不变、融化夹层厚度逐年增厚及多年冻土人为上限附近地温逐年升高;观测期内,P32和P33监测断面左右路肩变形均以沉降为主,且P32监测断面左右路肩的总沉降变形量均小于P33监测断面;其中P32监测断面左路肩暖季沉降变形明显,冷季发生轻微的冻胀变形,且发生沉降和冻胀的时间略滞后于路基下部温度场的变化;P33监测断面左右路肩地温场的差异导致左右路肩存在差异沉降,且其差异沉降值随时间逐年变大。  相似文献   
7.
气候变化背景下青藏铁路沿线多年冻土变化特征研究   总被引:1,自引:0,他引:1  
多年冻土是复杂地气系统的产物, 以升温为特征的气候变化不可避免地对其产生影响. 基于青藏铁路沿线8个天然场地2006-2011年的地温监测资料, 分析了气候变化背景下, 多年冻土升温特征及上限变化规律, 并对低、高温冻土的变化特征进行了对比分析. 结果表明: 2006-2011年监测期间, 铁路沿线多年冻土正在经历明显的升温趋势, 上限附近和15 m深处平均升温率分别为0.015 ℃·a-1和0.018 ℃·a-1, 其中, 低温冻土区在上述两个深度处升温均比高温冻土区显著; 多年冻土上限深度也表现出一定的增深趋势, 平均增深速率为4.7 cm·a-1, 其中, 高温冻土区增深速率大于低温冻土区. 低、高温冻土对气候变化的响应表现出了较大差异. 同时, 受局地因素的影响, 不同区域在升温和上限增深上也存在一定差异.  相似文献   
8.
青藏铁路沿线融区的特征及其变化趋势   总被引:4,自引:4,他引:0  
基于青藏铁路多年冻土区工程长期监测系统所获取的地温与变形资料,对铁路沿线4处融区的特征及其变化趋势进行了分析。这4处融区分别为沱沱河北面洼地辐射-渗透融区(R1)、休冬曲北岸河流融区(R2)、扎加藏布河西岸河流融区(R3)与洼里希里唐盆辐射-渗透融区(R4)。结果表明:R1土体温度处于升温中,融区正在发展;R2土体温度较为稳定,位于融区边缘地带;R3土体升温趋势明显,融区处于快速发展之中;R4深部土体温度较为稳定,融区仍处于稳定状态。在R1、R3与R4,路基下未形成隔年冻土;但在R2融区,路基下有形成隔年冻土的可能。监测期内,路基累计沉降变形小于50 mm,满足铁路路基设计规范的要求。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号