首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
大气科学   1篇
地球物理   7篇
地质学   7篇
天文学   15篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1981年   1篇
  1976年   1篇
  1972年   2篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
The mechanisms and kinetics of equilibration between peraluminousminerals and granitic melt were investigated experimentallyby the dissolution of corundum and andalusite into H2O-saturatedmetaluminous haplogranitic melt at 800°C and 200 MPa. Mineraland haplogranitic glass rods were juxtaposed inside platinumcapsules, and then subjected to experimental conditions fortimes ranging from 12 to 2900 h. Upon melting, the mineral –meltinterface retreats with the square root of time. The compositionof the melt at the interface changes with time, but its ASI[aluminum saturation index = molar Al2O3/(CaO + Na2O + K2O)]remains constant at  相似文献   
2.
Polarization measurements of type III bursts at 23.5 and 29.5 MHz have been compared for several years with indicators of magnetic fields in different height levels such as sunspot data, S-component characteristics, and noise storm data. By applying the Mount-Wilson and Brunner types of the related spot groups there results a positive relationship between the average degree of type III burst polarization and the magnitude or complexity of photospheric magnetic fields. For other parameters (leading spot area, peak intensity of the S-component at 9.1 cm wavelength) such a clear monotonic relation has not been found. Possibly the degree of polarization is influenced by height variations of the emitting level of the type III bursts at a fixed frequency due to variable electron densities. No connection has been detected between the type III burst polarization and noise storm fluxes which may be due to the local distance of the origin of both emissions.  相似文献   
3.
Usually the gyrosynchrotron emission of microwave bursts from electron populations with a power-law (PL) energy distribution has been considered under the assumption that the spectral index of the distribution is constant over a wide range of energies. Meanwhile, there is strong evidence, in particular from hard X-ray and -ray, but also from cm/mm wavelength radio observations, that in many solar flare events the spectrum of the emitting electrons is characterized by a significant hardening at energies above 100–500 keV. We present some examples of calculated microwave burst spectra at cm/mm wavelengths taking into account the above evidence. It is shown that a break in the energy spectrum of the PL electrons can indeed result in a spectral hardening sometimes observed in microwave bursts at frequencies above 10–30 GHz.  相似文献   
4.
A new parameterization of infrared radiative transfer in the 15-m CO2 band has been incorporated into the Spectral mesosphere/lower thermosphere model (SMLTM). The parameterization is applicable to calculations of heating rates above approximately 15 km for arbitrary vertical profiles of the CO2 concentration corresponding to the surface mixing ratio in the range 150–720 ppm. The sensitivity of the mesosphere and lower thermosphere (MLT) to doubling of CO2 has been studied. The thermal response in the MLT is mostly negative (cooling) and much stronger than in the lower atmosphere. An average cooling at the stratopause is about 14 K. It gradually decreases to approximately 8 K in the upper mesosphere and again increases to about 40–50 K in the thermosphere. The cooling and associated thermal shrinking result in a substantial density reduction in the MLT that reaches 40–45% in the thermosphere. Various radiative, chemical, and dynamical feedbacks potentially important for the thermal response in the MLT are discussed. It is noted that the results of simulations are strikingly similar to observations of long-term trends in the MLT. This suggests that during the last 3–4 decades the thermal structure in the real upper atmosphere has undergone substantial changes driven by forcing comparable with that due to doubling of CO2.  相似文献   
5.
This study examines hydration–diffusion in the metaluminous haplogranite system at 200 MPa H2O and 800–300°C. At 800°C hydration is accompanied by melting and uphill diffusion of sodium from anhydrous glass toward the region of hydration and melting, whereas potassium diffuses away from the hydration front and into anhydrous glass. Silicon and aluminum are simply diluted upon hydration. There is no change in molecular Al/(Na + K) throughout the entire hydration-diffusion aureole and, therefore, (1) there is no loss of alkalis to the vapor, and (2) K migrates to replace Na in order to maintain local charge balance required by IVAl. Alkali diffusion occurs over a viscosity contrast from 104.1 Pa s in hydrous liquid to 1011.8–1013.5 Pa s in anhydrous glass. From these results, we interpret that: (1) Na is structurally or energetically favored over K as a charge-balancing cation for IVAl in hydrous granitic liquids, whereas the opposite behavior has been observed for anhydrous melts, and (2) the diffusion of alkalis through silicate melts is largely independent of viscosity. Results from 600°C are similar to those at 800°C, but hydration at 300°C involves a loss of Na and concomitant increase in molar Al/(Na + K) in the hydration zone due to hydrogen-alkali exchange between fluid and glass. Hydration behavior at 400°C is transitional between those at 300°C and 600°C, suggesting that the change in hydration mechanism occurs near the glass transition.  相似文献   
6.
Simultaneous observations of spectra and polarization of two noise storms with high time resolution have been performed in IZMIRAN during the periods: May 17–23 and June 7–13, 1969. The results of the analysis show that for different noise storms Type I bursts and chains of Type I bursts possess different spectral and polarization characteristics and different tendencies in variation of these characteristics from day to day. In particular, the first stage of the noise storm in May presented some Type I bursts which displayed a varying degree of polarization within their individual lifetimes. In addition, 112 Type III bursts with weak or moderate polarization were observed.  相似文献   
7.
The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.  相似文献   
8.
Solar radio emission records received at the IZMIRAN spectrograph (25–270 MHz) during the solar flare event of February 12, 2010 are analyzed. Different fine structures were observed in three large groups of type III bursts against a low continuum. According to data from the Nancay radioheliograph, sources of all three groups of bursts were located in one active region, 11046, and their emissions were accompanied by soft X-ray bursts (GOES satellite): C7.9 at 0721 UT, B9.6 at 0940 UT, and M8.3 at 1125 UT. After the first group of bursts, classical fiber bursts were observed in combination with reverse-drift fiber bursts with unusual arc drift. After the third (the most powerful) group, stable second-length pulsations and slow-drift fiber bursts were observed, the instantaneous frequency bands of which were an order of magnitude larger than the frequency band of classical fiber bursts, and the frequency drift was several times lower. More complex fiber bursts were observed in the weakest group in the time range 0940:39–0942:00 UT. They were narrow-band (~0.5 MHz) fiber bursts, periodically recurring in a narrow frequency band (5–6 MHz) during several seconds. The presence of many chaotically drifting ensembles of fibers, crossing and superimposing on one another, is a feature of this event. It is assumed that occurrence of these structures can be connected with the existence of many small shock fronts behind the leading edge of a coronal mass ejection.  相似文献   
9.
An analysis of solar radio burst spectra in the range 3–80 GHz is carried out using measurements of the observatories at Bern and Nobeyama supplemented by data from worldwide network stations. Special interest was focused on strong events at frequencies above 30 GHz. It is found that there exists an extended group of events with a flattening of the spectra at millimeter wavelengths. In particular, two types of flattening are observed: (i) a high-frequency flattening either following a monotonic spectral flux increase at cm-waves or forming a flat broad-band spectrum at mm-wavelengths ; (ii) a millimetric flattening as a decrease of the slope (i.e., a hardening) of the descending branch of the spectrum having a peak in the microwave range. Besides this, in complicated bursts a strong temporal evolution of millimeter spectra may occur resulting in either type of the flattening. Some factors capable of producing the millimeter flattening are considered: (1) superposition of multiple source regions of gyrosynchrotron radiation, (2) gyromagnetic radiation from a two-component energy spectrum of the accelerated electrons at high energies, or by a temporal hardening of the electron spectrum during extended flares, and (3) optically thin bremsstrahlung of evaporated plasma.Presented at the CESRA Workshop on Coronal Magnetic Energy Release at Caputh near Potsdam in May 1994.  相似文献   
10.
The analysis of WIND/WAVES RAD2 spectra with fine structure in the form of different fibers in 14 events covering 1997?–?2005 is carried out. A splitting of broad bands of the interplanetary (IP) type II bursts into narrow band fibers of different duration is observed. The instantaneous-frequency bandwidth of fibers is stable: 200?–?300 kHz for slow-drifting fibers in type II bursts, and 700?–?1000 kHz for fast-drifting fibers in type II?+?IV (continuum). Intermediate drift bursts (IDB or fiber bursts) and zebra patterns with variable frequency drift of stripes, typical for the metric range, were not found. Comparison of spectra with the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph (SOHO/LASCO C2) images shows a connection of the generation of the fiber structures with the passage of shock fronts through narrow jets in the wake of Coronal Mass Ejections (CME). Therefore the most probable emission mechanism of fibers in IP type II bursts appears to be resonance transition radiation (RTR) of fast particles at the boundary of two media with different refractive indices. The same mechanism is also valid for striae in the type III bursts. Taking into account a high-density contrast in the CME wake and the actually observed small-scale inhomogeneities, the effectiveness of the RTR mechanism in IP space must be considerably higher than in the meter or decimeter wavelengths. For the most part the fibers in the type IV continuum at frequencies of 14?–?8 MHz were seen as the direct expansion of similar fine structure (as fibers or “herringbone” structure) in the decametric range observed with the Nançay and IZMIRAN spectrographs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号