首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   8篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2010年   2篇
  2009年   2篇
排序方式: 共有8条查询结果,搜索用时 62 毫秒
1
1.
The analyzed amplitude and phase variations in electromagnetic VLF and LF signals at 20–45 kHz, received in Moscow, Graz (Austria), and Sheffield (UK) during the total solar eclipse of March 20, 2015, are considered. The 22 analyzed paths have lengths of 200—6100 km, are differently oriented, and cross 40–100% occultation regions. Fifteen paths crossed the region where the occultation varied from 40 to 90%. Solar eclipse effects were found only on one of these paths in the signal phase (–50°). Four long paths crossed the 90–100% occultation region, and signal amplitude and phase anomalies were detected for all four paths. Negative phase anomalies varied from–75° to–90°, and the amplitude anomalies were both positive and negative and were not larger than 5 dB. It was shown that the effective height of the ionosphere varied from 6.5 to 11 km during the eclipse.  相似文献   
2.
In this paper, we suggest a technique for forecasting seismic events based on the very low and low frequency (VLF and LF) signals in the 10 to 50 Hz band using the neural network approach, specifically, the error back-propagation method (EBPM). In this method, the solution of the problem has two main stages: training and recognition (forecasting). The training set is constructed from the combined data, including the amplitudes and phases of the VLF/LF signals measured in the monitoring of the Kuril-Kamchatka region and the corresponding parameters of regional seismicity. Training the neural network establishes the internal relationship between the characteristic changes in the VLF/LF signals a few days before a seismic event and the corresponding level of seismicity. The trained neural network is then applied in a prognostic mode for automated detection of the anomalous changes in the signal which are associated with seismic activity exceeding the assumed threshold level. By the example of several time intervals in 2004, 2005, 2006, and 2007, we demonstrate the efficiency of the neural network approach in the short-term forecasting of earthquakes with magnitudes starting from M ≥ 5.5 from the nighttime variations in the amplitudes and phases of the LF signals on one radio path. We also discuss the results of the simultaneous analysis of the VLF/LF data measured on two partially overlapping paths aimed at revealing the correlations between the nighttime variations in the amplitude of the signal and seismic activity.  相似文献   
3.
介绍了大气层和电离层震前现象机制的基本观念。简短回顾了观测结果后,我们得出结论:1.流体下层物质(气泡)向上迁移能导致近地表的热水/气体被逐出,并在强度弱化的地区引发地震;2.因此,气泡出现的时间和地点是随机的,但是地震、地球化学异常和前震(地震、SA和超低频电磁异常)是随机关联的;3.大气温度和密度扰动跟随着震前热水/气体释放,导致产生周期为6~60min的大气重力波(AGW);4.地震引发的大气重力波能导致电离层扰动变化并导致大气层中地平线上无线电波传播、下部电离层低频波扰动和地面超低频辐射衰减的变化。  相似文献   
4.
5.
Two methods for diagnosing ionospheric disturbances using VLF signals received on the DEMETER satellite are considered in connection with two cases of high seismic activity: the method for analyzing a signal reception zone in order to find large-scale spatial variations and the residual signal method used to reveal time variations. Based on an analysis of the VLF signal reception zone, performed in connection with the catastrophic earthquake near Sumatra, it has been found out that the signal amplitude decreased during a month before the earthquake. As a result, it has been concluded that the zone of ionospheric disturbances extends for several thousand kilometers. It has been indicated that the residual signal method showed good agreement between the ground and satellite data when high seismic activity near Japan was analyzed.  相似文献   
6.
Izvestiya, Physics of the Solid Earth - Diagnostics of the outer envelopes of the Earth through global satellite navigational systems and through the equally global network of ground receivers and...  相似文献   
7.
8.
The long-term data during seven years from January 2001 to December 2007, as observed by the Pacific VLF/LF network consisting of several Japanese stations and one station in Kamchatka, are extensively utilized to perform a statistical correlation study between the lower ionospheric perturbations as detected by subionospheric propagation and earthquakes (EQs). In this paper, we adopt a physical parameter, the maximum seismicity intensity observed (I) to define the strength of an EQ unlike the previously and conventionally used EQ magnitude and depth, which is a combined effect of EQ magnitude and depth, together with the Earth’s surface information and geological condition around the EQ epicenter. After considering EQs only take place on the land because of the use of seismicity and by using the superimposed epoch analysis, it is found for the larger EQs with I from 5 to 7 (we feel serious trembling and we expect serious damage) that the most important VLF/LF parameter, trend (nighttime average amplitude), shows a definite decrease about 10 days before the EQ by exceeding 2σ (σ: standard deviation) criterion; the dispersion shows a maximum about 10 days before the EQ but not exceeding 2σ line and finally the nighttime fluctuation shows an enhancement about 10 days before the EQ (with exceeding the 2σ level). A definite statistical correlation is confirmed between the ionospheric perturbations and I when I is strong enough in a range from 5 to 7. Whereas, there is no significant correlation between the two when I is in a range from 3 to 4. Finally, together with the corresponding results for EQs in the sea, but close to the land, these results are discussed in the light of lithosphere–ionosphere coupling mechanism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号