首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
大气科学   2篇
地球物理   3篇
地质学   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  1996年   1篇
  1989年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Randel Tom Cox   《Tectonophysics》2009,474(3-4):674-683
Mesoscale structures in Paleozoic rocks of the Ozark plateaus reveal four Pennsylvanian deformation episodes in midcontinent North America. The two earliest episodes can be assigned to progressive northwestward docking of the Ouachita terrane with North America. Early extensional structures (Event 1) indicate a northwest/southeast maximum horizontal stress (Hmax) during Early Pennsylvanian Ouachita terrane advance. Event 2 extensional and strike-slip structures indicate Hmax across the Ozark plateaus that varies systematically from north-northwest/south-southeast in the south to northeast/southwest in the north. This suggests development of a slip-line deformation field in response to minor northeastward lateral escape of lithospheric blocks away from the northwestward-moving Ouachita terrane's leading edge, which acted as an indenter in western Arkansas, southeastern Oklahoma, and Texas. Younger contractional and strike-slip structures of Event 3 indicate northeast/southwest Hmax across the entire Ozark plateaus, and deformation orientation and intensity are not readily assigned to Ouachita foreland deformation and may be related to Middle Pennsylvanian Ancestral Rockies contractional deformation. Finally, Event 4 contractional structures indicate northwest/southeast Hmax consistent with southern Appalachian late stage convergence.Deformation episodes are localized along basement fault zones, particularly at major bends, suggesting minor restraining-bend uplifts along strike-slip faults. Geometries of conjugate normal fault and hybrid shear joint arrays indicate localized areas of high differential stress consistent with basement block uplift at these bends. High-angle faults reactivated in a reverse sense and bedding-parallel veins suggest tensile minimum stresses and pore fluid pressures exceeding lithostatic stress, consistent with brine pulses driven into the midcontinent during Late Paleozoic orogeny (as proposed by other authors).  相似文献   
2.
3.
The capability of the longest lidar data sets to monitor long-term temperature changes have been evaluated through comparisons with the successive Stratospheric Sounder Units (SSU) onboard NOAA satellites. Cross-consistency investigations between SSU and the lidar network can be considered as a first attempt to demonstrate how the synergistic use of space and ground-based instruments could provide reliable monitoring of the temperature of the middle atmosphere. The breakdown of the temperature cooling trend, and the following flattening observed in the satellite temperature series, is qualitatively confirmed by the lidars. However, there are still large differences that can either be due to SSU continuity (orbit drifts or weighting function modifications) or lidar operation changes (time of measurements, accuracy, sampling, etc.). SSU vertical weighting functions have been taken into account for comparisons. Some discontinuity events cannot be explained by the SSU weighting function drifts due to CO2. For the upper channels of SSU (peaking around 50 km), the results are probably sensitive to the mesospheric part of the lidar profiles that can explain some discontinuities. Tropical lidar stations show clear inter-annual differences with the SSU channels covering the lowest altitude range that needs further investigations to understand if the origin is instrumental or geophysical. An attempt to derive non-linear trends with combinations of linear, hockey stick, and quadratic functions has been made. While the quadratic term is not highly significant, this approach allows the derivation of a better quantification of the linear trend terms.  相似文献   
4.
The origin and significance of pimple mounds (low, elliptical to circular dune-like features found across much of the south-central United States) have been debated for nearly two centuries. We cored pimple mounds at four sites spanning the Ozark Plateau, Arkansas River Valley, and Gulf of Mexico Coastal Plain and found that these mounds have a regionally consistent textural asymmetry such that there is a significant excess of coarse-grained sediment within their northwest flanks. We interpret this asymmetry as evidence of an eolian depositional origin of these mounds and conclude they are relict nebkhas (coppice dunes) deposited during protracted middle to late Holocene droughts. These four mounds yield optically stimulated luminescence ages between 2400 and 700 yr that correlate with well-documented periods of eolian activity and droughts on the southern Great Plains, including the Medieval Climate Anomaly. We conclude vegetation loss during extended droughts led to local eolian deflation and pimple mound deposition. These mounds reflect landscape response to multi-decadal droughts for the south-central U.S. The spatial extent of pimple mounds across this region further underscores the severity and duration of late Holocene droughts, which were significantly greater than historic droughts.  相似文献   
5.
正1.Overview The upper troposphere-lower stratosphere(UTLS)of the Asian summer monsoon(ASM)region is characterized by a continental-scale anticyclonic circulation,which is dynamically active and coupled to monsoonal convection.The monsoon anticyclone exhibits anomalous chemical and aerosol characteristics,linked to the outflow of deep convection and the large-scale circulation,and strongly influences the global  相似文献   
6.
7.
Advances in computer technologies have improved the quality of maps, making map comparison and analysis easier, but uncertainty and error still exist in GIS when overlaying geographic data with multiple or unknown confidence levels. The goals of this research are to review current geospatial uncertainty literature, present the Error‐Band Geometry Model (EBGM) for classifying the size and shape of spatial confidence intervals for vector GIS data, and to analyze the interpretability of the model by looking at how people use metadata to classify the uncertainty of geographic objects. The results from this research are positive and provide important insight into how people interpret maps and geographic data. They suggest that uncertainty is more easily interpreted for well defined point data and GPS data. When data is poorly defined, people are unable to determine an approach to model uncertainty and generate error‐bands. There is potential for using the EBGM to aid in the development of a GIS tool that can help individuals parameterize and model spatial confidence intervals, but more research is needed to refine the process by which people use the decision tree. A series of guiding questions or an “uncertainty wizard” tool that helps one select an uncertainty modeling approach might improve the way people apply this model to real‐world applications.  相似文献   
8.
Floodway modeling has been performed extensively using HECRAS in floodplain studies. The model output is typically exported in GIS format and the floodway boundaries are overlaid on other spatial data to further edit or remodel the floodway to meet FEMA and local development requirements. In this article, a tightly coupled system comprised of a commercial GIS (ArcGIS) and HECRAS is presented. FloodwayGIS provides a comprehensive visual environment to edit, remodel, spatially analyze, and map floodway boundaries. The environment uses the HECRAS executable engine for every remodeling iteration. Four different encroachment editing options are provided within FloodwayGIS, which eliminates the need for a modeler to switch between HECRAS and GIS in the floodway modeling process, and results in savings of modeling time. FloodwayGIS also provides a mapping algorithm based on TIN intersection to produce smooth floodway boundaries that can be mapped in Digital Flood Insurance Rate Maps (DFIRMs) with minor editing.  相似文献   
9.
Wells designated as groundwater under the direct influence (GUDI) of surface water have caused an ongoing boil-water advisory afflicting the island of Tutuila, American Samoa for almost a decade. Regulatory testing at these wells found turbidity and indicator bacteria spikes correlated with heavy rainfall events. However, the mechanism of this contamination has, until now, remained unknown. Surface water may reach wells through improperly sealed well casings, or through the aquifer matrix itself. In this study, three independent surface water tracers, turbidity, indicator bacteria, and water isotopes were used to assess recharge timing and determine contamination mechanisms. Results from each method were reasonably consistent, revealing average GUDI well breakthrough times of 37 ± 21 h for turbidity, 18 to 63 h for bacteria, and 1 to 5 days for water isotopes. These times match well with estimated subsurface flow rates through highly permeable aquifer materials. In contrast, where one well casing was found to be compromised, turbidity breakthrough was observed at 3 to 4 h. These results support local management decisions and show repairing or replacing wells will likely result in continued GUDI contamination. Additionally, differences in observed rainfall response for each tracer provide insight into the recharge dynamics and subsurface flow characteristics of this and other highly conductive young-basaltic aquifers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号