首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   2篇
测绘学   1篇
大气科学   6篇
地球物理   12篇
地质学   22篇
海洋学   2篇
综合类   1篇
自然地理   2篇
  2020年   1篇
  2017年   2篇
  2013年   3篇
  2011年   2篇
  2010年   5篇
  2008年   3篇
  2007年   8篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1983年   2篇
  1977年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
The stability of cohesive and non-cohesive sediments in a mixed intertidal habitat within the Ria Formosa tidal lagoon, Portugal, was examined during two field campaigns as part of the EU F-ECTS project. The cohesive strength meter Mk III was used to determine critical erosion shear stress (τc) within a variety of different intertidal habitats and substrata, including Spartina maritima fields and Zostera noltii beds. The best predictor(s) for τc were derived from a range of properties measured for the surface sediments (chlorophyll a, colloidal carbohydrate, water, organic content, % fraction <63 μm, and seabed elevation). Pigment biomarkers were used to identify the dominant algal groups within the surface phytobenthic assemblage.Strong, seasonally dependent relationships were found between τc and habitat type, chl a, colloidal carbohydrate and bed elevation. Typically, critical erosion thresholds decreased seawards, reflecting a change from biostabilisation by cyanobacteria in the upper intertidal areas, to biostabilisation by diatoms on the bare substrata of the channel edges. In the late summer/early autumn, cyanobacteria were the main sediment stabilisers, and colloidal carbohydrate was the best bio-dependent predictor of τc across the entire field area. In the late winter/early spring, cyanobacterial activity was lower, and sediment stabilisation by Enteromorpha clathrata was important; the best predictor of τc was bed elevation. The implications and use of proxies for sediment stability are discussed in terms of feedback and sedimentation processes operating across the intertidal area.  相似文献   
2.
The historical records of Kilauea and Mauna Loa volcanoes reveal that the rough-surfaced variety of basalt lava called aa forms when lava flows at a high volumetric rate (>5–10 m3/s), and the smooth-surfaced variety called pahoehoe forms at a low volumetric rate (<5–10 m3/s). This relationship is well illustrated by the 1983–1990 and 1969–1974 eruptions of Kilauea and the recent eruptions of Mauna Loa. It is also illustrated by the eruptions that produced the remarkable paired flows of Mauna Loa, in which aa formed during an initial short period of high discharge rate (associated with high fountaining) and was followed by the eruption of pahoehoe over a sustained period at a low discharge rate (with little or no fountaining). The finest examples of paired lava flows are those of 1859 and 1880–1881. We attribute aa formation to rapid and concentrated flow in open channels. There, rapid heat loss causes an increase in viscosity to a threshold value (that varies depending on the actual flow velocity) at which, when surface crust is torn by differential flow, the underlying lava is unable to move sufficiently fast to heal the tear. We attribute pahoehoe formation to the flowage of lava at a low volumetric rate, commonly in tubes that minimize heat loss. Flow units of pahoehoe are small (usually <1 m thick), move slowly, develop a chilled skin, and become virtually static before the viscosity has risen, to the threshold value. We infer that the high-discharge-rate eruptions that generate aa flows result from the rapid emptying of major or subsidiary magma chambers. Rapid near-surface vesiculation of gas-rich magma leads to eruptions with high discharge rates, high lava fountains, and fast-moving channelized flows. We also infer that long periods of sustained flow at a low discharge rate, which favor pahoehoe, result from the development of a free and unimpeded pathway from the deep plumbing system of the volcano and the separation of gases from the magma before eruption. Achievement of this condition requires one or more episodes of rapid magma excursion through the rift zone to establish a stable magma pathway.  相似文献   
3.
The Eoarchaean (>3,600 Ma) Itsaq Gneiss Complex of southern West Greenland is dominated by polyphase orthogneisses with a complex Archaean tectonothermal history. Some of the orthogneisses have c. 3,850 Ma zircons, and they vary from rare single phase metatonalites to more common complexly banded migmatites. This is due to heterogeneous strain, in situ anatexis and granitic veining superimposed during younger tectonothermal events. In the single-phase tonalites with c. 3,850 Ma zircon, oscillatory-zoned prismatic zircon is all 3,850 Ma old, but shows patchy ancient loss of radiogenic Pb. SHRIMP spot analyses and laser ablation ICP-MS depth profiling show that thin (usually < 10 μm) younger (3,660–3,590 Ma and Neoarchaean) shells of lower Th/U metamorphic zircon are present on these 3,850 Ma zircons. Several samples with this simple zircon population occur on islands near Akilia. In contrast, migmatites usually contain more complex zircon populations, with often more than one generation of igneous zircon present. Additional zircon dating of banded gneisses across the Complex shows that samples with c. 3,850 Ma igneous zircon are not just a phenomenon restricted to Akilia and adjacent islands. For example, migmatites from Itilleq (c. 65 km from Akilia) contain variable amounts of oscillatory-zoned 3,850 Ma and 3,650 Ma zircon, interpreted, respectively, as the rock age and the time of crustal melting under Eoarchaean metamorphism. With only 110–140 ppm Zr in the tonalites and likely magmatic temperatures of >850°C, zircon solubility–melt composition relationships show that they were only one-third saturated in zircon. Any zircon entrained in the precursor magmas would thus have been highly soluble. Combined with the cathodoluminesence imaging, this demonstrates that the c. 3,850 Ma oscillatory zoned zircon crystallised out of the melt and hence gives a magmatic age. Thus the rare well-preserved tonalites and palaeosome in migmatites testify that c. 3,850 Ma quartzo–feldspathic rocks are a widespread (but probably minor) component in the Itsaq Gneiss Complex. C. 3,850 Ma zircon with negative Eu anomalies (showing growth in felsic systems) also occurs as detrital grains in rare c. 3,800 Ma metaquartzites and as inherited grains in some 3,660 Ma granites (sensu stricto). These demonstrate that still more c. 3,850 Ma rocks were present, but were recycled into Eoarchaean sediments and crustally derived granites. The major and trace element characteristics (e.g. LREE enrichment, HREE depletion, low MgO) of the best-preserved c. 3,850 Ma rocks are typical of Archaean TTG suites, and thus argue for crust formation processes involving important contributions from melting of hydrated mafic crust to the earliest Archaean. Five c. 3,850 Ma tonalites were selected as the best preserved on the basis of field criteria and zircon petrology. Four of these samples have overlapping initial ɛNd (3,850 Ma) values from +2.9 to +3.6± 0.5, with the fourth having a slightly lower value of +0.6. These data provide additional evidence for a markedly LREE-depleted early terrestrial mantle reservoir. The role of c. 3,850 Ma crust should be considered in interpreting isotope signatures of the younger (3,800–3,600 Ma) rocks of the Itsaq Gneiss Complex. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
4.
A limited-area seven-layer physical-numerical model for the lower tropospheric region (surface - 1600m) is described. The grid interval, approximately 190km, is half that of the standard numerical weather-prediction grid used in the hemispheric free atmospheric operational model at the Air Force Global Weather Central (AFGWC). This model is an integral part of the complete AFGWC meso-scale (sub-synoptic) numerical analysis and prediction system and is used to provide greater horizontal and vertical resolution in both numerical analyses and forecasts.Important features of this boundary-layer model include: a completely automated objective analysis of input data; the transport of heat and moisture by three-dimensional wind flow; latent heat exchange in water substance phase changes; and eddy fluxes of heat and water vapor.Input data are conventional synoptic surface and upper air reports. Other operational AFGWC prediction models provide input in the form of horizontal wind components at the upper boundary and an estimate of cloudiness above the boundary layer. Forecasts for the lower boundary and surface layer are empirically derived. Despite some approximations which broadly simplify the real planetary boundary-layer processes, operational use for highly weather-sensitive Air Weather Service support indicates that the model is capable of producing accurate detailed forecasts for periods of up to 24h.A modified version of this paper was presented at the IUGG-IAMAP-AMS conference on Planetary Boundary Layers at Boulder, Colo., 18–21 March, 1970, and at the 5th annual Congress of the Canadian Meteorological Society, at Macdonald College, 12–14 May, 1971.  相似文献   
5.
Age verification of rubyfish (Plagiogeneion rubiginosum) was sought using the bomb radiocarbon chronometer procedure. Stable isotopes were investigated for life history characteristics. Radiocarbon (14C) and stable isotope (δ18O and δ13C) levels were measured in micro-samples from five otoliths that had been aged using a zone count method. All the core 14C measurements were ‘pre-bomb’ indicating ages of at least 45 years, and the 14C measurements across the otolith sections suggested that the zone-count ageing method described herein is not biased. Maximum estimated age was 100 years. There was no significant between-sex difference in the von Bertalanffy growth curves. The δ18O values indicated that rubyfish are near-surface as juveniles, and move deeper with age. Adults appear to reside in 600–1000 m; this is deeper than most trawl-capture data suggest, but not implausible, and has stock assessment implications. The δ13C values reflect fish metabolic rates, trophic feeding levels and oceanographic conditions. The stable isotopes record the environmental life history of each fish, and have value in distinguishing stocks and/or indicating vertical and latitudinal migratory patterns.  相似文献   
6.
The inland capture fisheries of the Mekong represent critical sources of nutrition in rural diets in a region that faces endemic food and nutritional deficits. However within regional development debates that prioritize utilising the waters of the Mekong to generate electricity, capture fisheries are often presented as ultimately doomed, and therefore as an unfortunate, but necessary trade-off for hydropower. At the heart of these debates, lie contested definitions of development. The notion that fisheries could or should be traded-off for some other form of development exemplifies this tension.This paper draws on anthropological approaches to policy analysis based on discourse and narratives. We begin by placing the conventional wisdom regarding the place of fisheries in regional development under closer scrutiny. We then explore the potential for a counter narrative based around food and food sovereignty, in which fisheries and fishers are drivers, rather than costs of development. We argue that fisheries provide a range of livelihood and developmental values that cannot be replaced and that their management continues to hold potential for strengthening independence and self-reliance. In doing so, we build on empirical evidence from the Lao PDR, a country with a rich capture fishery but also endemic food crises, and also a national policy commitment to both poverty reduction and extensive large-scale hydropower development. As such, this paper attempts to reframe the debate on development in the Mekong. The paper has wider significance for considering how a broader focus on food and food producers can generate alternative development pathways.  相似文献   
7.
Modern chemical sediments display a distinctive rare earth element + yttrium (REE + Y) pattern involving depleted LREE, positive La/La*SN, Eu/Eu*SN, and YSN anomalies (SN = shale normalised) that is related to precipitation from circumneutral to high pH waters with solution complexation of the REEs dominated by carbonate ions. This is often interpreted as reflecting precipitation from surface waters (usually marine). The oldest broadly accepted chemical sediments are c. 3,700 Ma amphibolite facies banded iron-formation (BIF) units in the Isua supracrustal belt, Greenland. Isua BIFs, including the BIF international reference material IF-G are generally considered to be seawater precipitates, and display these REE + Y patterns (Bolhar et al. in Earth Planet Sci Lett 222:43–60, 2004). Greenland Eoarchaean BIF metamorphosed up to granulite facies from several localities in the vicinity of Akilia (island), display REE + Y patterns identical to Isua BIF, consistent with an origin by chemical sedimentation from seawater and a paucity of clastic input. Furthermore, the much-debated magnetite-bearing siliceous unit of “earliest life” rocks (sample G91/26) from Akilia has the same REE + Y pattern. This suggests that sample G91/26 is also a chemical sediment, contrary to previous assertions (Bolhar et al. in Earth Planet Sci Lett 222:43–60, 2004), and including suggestions that the Akilia unit containing G91/26 consists entirely of silica-penetrated, metasomatised, mafic rock (Fedo and Whitehouse 2002a). Integration of our trace element data with those of Bolhar et al. (Earth Planet Sci Lett 222:43–60, 2004) demonstrates that Eoarchaean siliceous rocks in Greenland, with ages from 3.6 to 3.85 Ga, have diverse trace element signatures. There are now geographically-dispersed, widespread examples with Isua BIF-like REE + Y signatures, that are interpreted as chemically unaltered, albeit metamorphosed, chemical sediments. Other samples retain remnants of LREE depletion but are beginning to lose the distinct La, Eu and Y positive anomalies and are interpreted as metasomatised chemical sediments. Finally there are some siliceous samples with completely different trace element patterns that are interpreted as rocks of non-sedimentary origin, and include metasomatised mafic rocks. The positive La/La*SN, Eu/Eu*SN and YSN anomalies found in Isua BIFs and other Eoarchaean Greenland samples, such as G91/26 from Akilia, suggests that the processes of carbonate ion complexation controlling the REE − Y patterns were already established in the hydrosphere at the start of the sedimentary record 3,600–3,850 Ma ago. This is in accord with the presence of Eoarchaean siderite-bearing marbles of sedimentary origin, and suggests that CO2 may have been a significant greenhouse gas at that time.  相似文献   
8.
9.
The age and Precambrian history of the Moine Supergroup within the Caledonide belt of north-west Scotland have long been contentious issues. The Ardgour granite gneiss is essentially an in situ anatectic granite formed during deformation and regional high-grade metamorphism from Moine metasediments. High-precision TIMS and SHRIMP U-Pb zircon dating shows that the age of the anatectic Ardgour granite gneiss and its enclosed segregation pegmatites is 873 ± 7 Ma. This demonstrates the reality of a Neoproterozoic episode of high-grade metamorphism in the Glenfinnan Group Moine and, contrary to previous evidence, the absence of Grenvillian-aged metamorphism. This conclusion places constraints on Neoproterozoic palaeogeographic reconstructions of the North Atlantic region, indicating that the Moine rocks cannot be used as a link between the Grenvillian belt of North America and the Sveconorwegian orogen in Scandinavia. SHRIMP ages of between c. 1100 and 1900 Ma were obtained from detrital, inherited zircons and reflect the provenance of the Glenfinnan Group Moine sediments which must, therefore, have been deposited between c. 1100 and 870 Ma. Potential sources are found as relatively minor, tectonically bounded basement inliers within the British Caledonides, although more widespread source areas occur outside Britain in both Laurentia and Baltica. The most important feature of the provenance is the absence of detrital Archaean grains. This suggests that the Archaean Lewisian gneiss complex, which forms the basement component of the western foreland to the Caledonides in Britain, was not a major contributor to the Glenfinnan Group basin. Received: 16 June 1996 / Accepted: 29 January 1997  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号