首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
测绘学   1篇
地球物理   4篇
自然地理   4篇
  2022年   1篇
  2021年   2篇
  2017年   1篇
  2013年   1篇
  2002年   1篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
4.
Siberian traps are the result of huge basalt eruptions which took place about 250 Ma ago over a vast territory of Siberia. The genesis of Siberian traps is attributed to a mantle plume with a center in the region of Iceland or beneath the central Urals in terms of their present coordinates. The eruption mechanism is associated with delamination—replacement of the mantle lithosphere by the deep magma material. The receiver function analysis of the records from the Norilsk seismic station (NRIL) allows comparing these hypotheses with the factual data on the depth structure of the region of Siberian traps. The S-wave velocity section place the seismic lithosphere/asthenosphere boundary (LAB) at a depth of 155–190 km, commensurate with the data for the other cratons. The mantle lithosphere has a high S-wave velocity characteristic of cratons (4.6–4.8 km/s instead of the typical value 4.5 km/s). The seismic boundary, which is located at a depth around 410 km beneath the continents is depressed by ~10 km in the region of the NRIL station. The phase diagram of olivine/wadsleyite transformation accounts for this depression by a 50–100°С increase in temperature. At the depths of 350–400 km, the S-wave velocity drops due to partial melting. A new reduction in the S-wave velocities is observed at a depth of 460 km. The similar anomalies (deepening of the 410-km seismic boundary and low shear wave velocity at depths of 350–400 and 460–500 km, respectively) were previously revealed in the other regions of the Meso-Cenozoic volcanism. In the case of a differently directed drift of the Siberian lithosphere and underlying mantle at depths down to 500 km, these anomalies are barely accountable. In particular, if the mantle at a depth ranging from 200 to 500 km is fixed, the anomalies should be observed at the original locations where they emerged 250 Ma ago, i.e. thousands of km from the Siberian traps. Our seismic data suggest that despite the low viscosity of the asthenosphere, the mantle drift at depths ranging from 200 to 500 km is correlated with the drift of the Siberian lithospheric plate. Furthermore, the position of the mantle plume beneath the Urals is easier to reconcile with the seismic data than its position beneath Iceland because of the Siberian traps being less remote from the Urals.  相似文献   
5.
Erduran  M.  Oreshin  S.  Vinnik  L.  Çakır  Ö.  Makeyeva  L. 《Journal of Seismology》2022,26(2):265-281
Journal of Seismology - By using P and S wave receiver functions and P and S wave travel time residuals, we have found velocity models for 16 seismograph stations in Eastern Anatolia. Our study is...  相似文献   
6.
Izvestiya, Physics of the Solid Earth - Abstract—Analysis of P- and S-receiver functions for 19 seismic stations on the Balkan Peninsula has been performed. Half of the stations are in...  相似文献   
7.
Izvestiya, Physics of the Solid Earth - Simultaneous inversion of P and S receiver functions and of dispersion curves of Rayleigh waves for 16 seismograph stations provides insight into structure...  相似文献   
8.
9.
Summary. Seismic anisotropy has been previously studied at depths usually not exceeding 100 or 150 km. In this paper we present a method of analysis of seismic records which is very sensitive to azimuthal anisotropy and is applicable at almost any depth range. The idea of the method is to detect and analyse the SH -component of the waves, converted from P to S in the mantle. The procedure of record processing includes frequency filtering, axis rotation, transformation of the record to a standard form, stacking the standardized SH -component records of many seismic events, and the harmonic analysis of amplitude as a function of the direction of wave propagation. When applied to the long-period records of NORSAR the procedure detected a converted wave with the properties implying the possibility of its propagation in a transversely isotropic medium with a horizontal axis of symmetry . Our preferred model postulates anisotropy of ∼ 1 per cent in a layer 50 km thick at the base of the upper mantle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号