首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
地质学   1篇
  1997年   1篇
  1983年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Region 2 comprises arctic and subarctic North America and is underlain by continuous or discontinuous permafrost. Its freshwater systems are dominated by a low energy environment and cold region processes. Central northern areas are almost totally influenced by arctic air masses while Pacific air becomes more prominent in the west, Atlantic air in the east and southern air masses at the lower latitudes. Air mass changes will play an important role in precipitation changes associated with climate warming. The snow season in the region is prolonged resulting in long-term storage of water so that the spring flood is often the major hydrological event of the year, even though, annual rainfall usually exceeds annual snowfall. The unique character of ponds and lakes is a result of the long frozen period, which affects nutrient status and gas exchange during the cold season and during thaw. GCM models are in close agreement for this region and predict temperature increases as large as 4°C in summer and 9°C in winter for a 2 × CO2 scenario. Palaeoclimate indicators support the probability that substantial temperature increases have occurred previously during the Holocene. The historical record indicates a temperature increase of > 1°C in parts of the region during the last century. GCM predictions of precipitation change indicate an increase, but there is little agreement amongst the various models on regional disposition or magnitude. Precipitation change is as important as temperature change in determining the water balance. The water balance is critical to every aspect of hydrology and limnology in the far north. Permafrost close to the surface plays a major role in freshwater systems because it often maintains lakes and wetlands above an impermeable frost table, which limits the water storage capabilities of the subsurface. Thawing associated with climate change would, particularly in areas of massive ice, stimulate landscape changes, which can affect every aspect of the environment. The normal spring flooding of ice-jammed north-flowing rivers, such as the Mackenzie, is a major event, which renews the water supply of lakes in delta regions and which determines the availability of habitat for aquatic organisms. Climate warming or river damming and diversion would probably lead to the complete drying of many delta lakes. Climate warming would also change the characteristics of ponds that presently freeze to the bottom and result in fundamental changes in their limnological characteristics. At present, the food chain is rather simple usually culminating in lake trout or arctic char. A lengthening of the growing season and warmer water temperature would affect the chemical, mineral and nutrient status of lakes and most likely have deleterious effects on the food chain. Peatlands are extensive in region 2. They would move northwards at their southern boundaries, and, with sustained drying, many would change form or become inactive. Extensive wetlands and peatlands are an important component of the global carbon budget, and warmer and drier conditions would most likely change them from a sink to a source for atmospheric carbon. There is some evidence that this may be occurring already. Region 2 is very vulnerable to global warming. Its freshwater systems are probably the least studied and most poorly understood in North America. There are clear needs to improve our current knowledge of temperature and precipitation patterns; to model the thermal behaviour of wetlands, lakes and rivers; to understand better the interrelationships of cold region rivers with their basins; to begin studies on the very large lakes in the region; to obtain a firm grasp of the role of northern peatlands in the global carbon cycle; and to link the terrestrial water balance to the thermal and hydrological regime of the polar sea. Overall, there is a strong need for basic research and long-term monitoring. © 1997 John Wiley & Sons, Ltd.  相似文献   
2.
Detailed geochronological, structural and petrological studies reveal that the geological evolution of the Field Islands area, East Antarctica, was substantially similar to that of the adjacent Archaean Napier Complex, though with notable differences in late and post Archaean times. These differences reflect the area's proximity to the Proterozoic Rayner Complex and consequent vulnerability to tectonic process involved in the formation of the latter. Distinctive structural features of the Field Islands are (1) consistent development of a discordant, pervasive S3 axial-plane foliation; (2) re-orientation of S3 axial planes to approximate to the subsequent E-W tectonic trend of the nearby Rayner Complex; (3) selective retrogression by a post-D3 static thermal overprint; and (4) relatively common development of retrogressive, E-W-trending, mylonitic shear zones. Peak metamorphic conditions in excess of 800°C at 900 ± 100 M Pa (9 kbar) were attained at one locality following, but probably close to the time of D2 folding. D3 took place in late Archaean times when metamorphic temperatures were about 650°C and pressures were about 600 MPa (6 kbar). Later, temperatures of 600 ± 50°C and pressures of 700 MPa (7kbar) were attained in an amphibolite-facies event, presumably associated with the widespread granulite to amphibolite-facies metamorphism and intense deformation involved in the formation of the Rayner Complex at about 1100 Ma. The area was subsequently subjected to near-isothermal uplift. Rb-Sr isotopic data indicate that the pervasive D3 fabric developed at about 2400–2500 Ma, and this age can be further refined to 2456+8-5 Ma by concordant zircon analyses from a syn-D3 pegmatite. All zircons were affected by only minor (<7–10%) Pb loss and/or new zircon growth during the Rayner event at about 1100Ma. Thus the 450–850 μg/gU concentrations of these zircons were too low to cause sufficient lattice damage over the 1350 Ma (from 2450 Ma) for excessive Pb to be lost during the 1100 Ma event. The emplacement of pegmatite at 522 ± 10 Ma substantially changed the Rb-Sr systematics of the only analysed rock that developed a penetrative fabric during the 1100 Ma event. Monazite in this pegmatite contains an inherited Pb component, which probably resides in small opaque inclusions. A good correlation is found between Rb-Sr total-rock ages and rock fabric. U-Pb zircon intercepts with concordia also mostly correspond to known events. However, in one example a near perfect alignment of zircon analyses, probably developed by mixing of unrelated components, produced concordia intercepts that appear to have no direct geochronological significance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号