首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2013年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
ABSTRACT

This paper deals with the question of whether a lumped hydrological model driven with lumped daily precipitation time series from a univariate single-site weather generator can produce equally good results compared to using a multivariate multi-site weather generator, where synthetic precipitation is first generated at multiple sites and subsequently lumped. Three different weather generators were tested: a univariate “Richardson type” model, an adapted univariate Richardson type model with an improved reproduction of the autocorrelation of precipitation amounts and a semi-parametric multi-site weather generator. The three modelling systems were evaluated in two Alpine study areas by comparing the hydrological output with respect to monthly and daily statistics as well as extreme design flows. The application of a univariate Richardson type weather generator to lumped precipitation time series requires additional attention. Established parametric distribution functions for single-site precipitation turned out to be unsuitable for lumped precipitation time series and led to a large bias in the hydrological simulations. Combining a multi-site weather generator with a hydrological model produced the least bias.  相似文献   
2.
ABSTRACT

This study compares model averaging and model selection methods to estimate design floods, while accounting for the observation error that is typically associated with annual maximum flow data. Model selection refers to methods where a single distribution function is chosen based on prior knowledge or by means of selection criteria. Model averaging refers to methods where the results of multiple distribution functions are combined. Numerical experiments were carried out by generating synthetic data using the Wakeby distribution function as the parent distribution. For this study, comparisons were made in terms of relative error and root mean square error (RMSE) referring to the 1-in-100 year flood. The experiments show that model averaging and model selection methods lead to similar results, especially when short samples are drawn from a highly asymmetric parent. Also, taking an arithmetic average of all design flood estimates gives estimated variances similar to those obtained with more complex weighted model averaging.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号