首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2012年   2篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The Dixon Island Formation of the coastal Pilbara Terrane, Western Australia is a 3.2 Ga volcanic–sedimentary sequence influenced by syndepositional hydrothermal activity formed in an island‐arc setting. We documented lateral variations in stratigraphy, hydrothermal alteration, and biological activity recorded in the sedimentary rocks (over several kilometers), with the aim of identifying areas of biological activity and related small‐scale structures. The Dixon Island Formation comprises volcaniclastics, black chert, and iron‐rich chert within seven tectonic blocks. Based on detailed geological mapping, stratigraphic columns, carbon isotope composition, and organic carbon (Corg) content, we found lateral (>5 km) variations in stratigraphy and carbon isotope compositions in a black chert sequence above the Mesoarchean seafloor with hydrothermal activity. Two felsic tuff layers are used as stratigraphic marker beds within a black chert sequence, which was deposited on altered volcanic rocks. The black chert sequence in each tectonic block is 10–20 m thick. Thickness variations reflect topographical undulations in the paleo‐ocean floor due to faulting. Early‐stage normal faults indicate extensional conditions after hydrothermal activity. Black chert beds in the topographically subsided area contain higher Corg contents (about 0.4 wt%) than in areas around the depression (<0.1 wt%). Carbon isotope compositions for the black chert vary from ?40 to ?25‰, which are similar to values obtained for a black chert vein within the komatiite–rhyolite tuff sequence (underlying the black chert sequence). Those for other rock types in the Dixon Island Formation are ?33 to ?15‰. Results indicate that deformation occurred soon after the final stages of hydrothermal activity. After this early‐stage deformation, organic‐rich sediments were deposited over an area several kilometers across. The organic‐rich sediments indicate stagnant anoxic conditions that resulted in the deposition of siliceous and organic matter from hydrothermal vein systems. When hydrothermal activity terminated, normal faulting occurred and organic matter was deposited from the sea surface and silica from the seafloor.  相似文献   
2.
The bulk composition of the continental crust throughout geological history is thought by most previous workers to be andesitic. This assumption of an andesitic bulk composition led to an early hypothesis by 72 ) that the continental crust was created by arc magmatism. This hypothesis for the origin of continental crust was challenged by several authors because: (i) the mean rate of arc crust addition obtained by 50 ) is too small to account for some certain phases of rapid crustal growth; and (ii) the bulk composition of ocean island arcs, the main contributor to the Archean and early Proterozoic crust, is basaltic rather than andesitic ( 4 ; 49 ). New data from the Northern Izu–Bonin arc are presented here which support the 72 ) hypothesis for the origin of the continental crust by andesitic arc magma. A geological interpretation of P wave crustal structure obtained from the Northern Izu–Bonin arc by 66 ) indicates that the arc crust has four distinctive lithologic layers: from top to bottom: (i) a 0.5–2-km-thick layer of basic to intermediate volcaniclastic, lava and hemipelagite (layer A); (ii) a 2–5-km-thick basic to intermediate volcaniclastics, lavas and intrusive layer (layer B); (iii) a 2–7-km-thick layer of felsic (tonalitic) rocks (layer C); and (iv) a 4–7-km-thick layer of mafic igneous rocks (layer D). The chemical composition of the upper and middle part of the northern Izu–Bonin arc is estimated to be similar to the average continental crust by 73 ). The rate of igneous addition of the Northern Izu–Bonin arc since its initial 45-Ma magmatism was calculated as 80 km3/km per million years. This rate of addition is considered to be a reasonable estimate for all arcs in the western Pacific. Using this rate, the global rate of crustal growth is estimated to be 2.96 km3/year which exceeds the average rate of crustal growth since the formation of the Earth (1.76 km3/year). Based on this estimate of continental growth and the previously documented sediment subduction and tectonic erosion rate (1.8 km3/year, 24 ), several examples of growth curves of the continental crust are presented here. These growth curves suggest that at least 50% of the present volume of the continental crust can be explained by arc magmatism. This conclusion indicates that arc magmatism is the most important contributor to the formation of continental crust, especially at the upper crustal level.  相似文献   
3.
Nagahama Bay of Satsuma Iwo‐Jima Island, southwest Japan, is an excellent place for studying sedimentation of iron‐oxyhydroxides by shallow‐marine low‐temperature hydrothermal activity. Its fishing port has a narrow entrance that limits exchange of seawater between the bay and open ocean, allowing the accumulation of fine‐grained precipitates of iron‐bearing materials (Fe‐oxyhydroxides) on the seafloor. The fishing port is usually filled with orange‐ to brown‐colored Fe‐rich water, and deposits >1.5 m thick Fe‐rich sediments. To elucidate the movement and depositional processes of the Fe‐rich precipitates in the bay, we conducted continuous profiling of turbidity throughout the tidal cycle and monitoring of surface water. The results showed that clear seawater entered the bay during the rising tide, and turbid colored water flowed into the ocean during the ebb tide. Neap tide was found to be an optimal condition for sedimentation of Fe‐oxyhydroxides due to weak tidal currents. Storms and heavy rains were also found to have influenced precipitation of Fe‐oxyhydroxides. Storm waves disturbed the bottom sediments, resulting in increased turbidity and rapid re‐deposition of Fe‐oxyhydroxides with an upward‐fining sequence. Heavy rain carried Fe‐oxyhydroxides originally accumulated in nearby beach sands to the bay. Our findings provide information on optimal conditions for the accumulation of Fe‐rich sediments in shallow‐marine hydrothermal settings.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号