首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地球物理   4篇
地质学   5篇
天文学   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有12条查询结果,搜索用时 312 毫秒
1.
2.
High-pressure metamorphic rocks exposed in the Bantimala area, c . 40  km north-east of Ujung Pandang, were formed as a Cretaceous subduction complex with fault-bounded slices of melange, chert, basalt, turbidite, shallow-marine sedimentary rocks and ultrabasic rocks. Eclogites, garnet–glaucophane rocks and schists of the Bantimala complex have estimated peak temperatures of T  =580–630 °C at 18  kbar and T  =590–640 °C at 24  kbar, using the garnet–clinopyroxene geothermometer. The garnet–omphacite–phengite equilibrium is used to estimate pressures. The distribution coefficient K D1=[( X pyr)3( X grs)6/( X di)6]/[(Al/Mg)M2,wm (Al/Si)T2,wm]3 among omphacite, garnet and phengite is a good index for metamorphic pressures. The K D1values of the Bantimala eclogites were compared with those of eclogites with reliable P–T  estimates. This comparison suggests that peak pressures of the Bantimala eclogites were P =18–24  kbar at T  =580–640 °C. These results are consistent with the P–T  range calculated using garnet–rutile–epidote–quartz and lawsonite–omphacite–glaucophane–epidote equilibria.  相似文献   
3.
High‐grade mylonites occur in the Takahama metamorphic rocks, a member of the high‐pressure low‐temperature type Nagasaki Metamorphic Rocks, western Kyushu, Japan. Mafic layers within the mylonites retain reaction microstructures consisting of margarite aggregates armoring both corundum and kyanite. The following retrograde reaction well accounts for the microstructures in the CaO–Al2O3–SiO2–H2O system: 3Al2O3 + 2Al2SiO5 + 2Ca2Al3Si3O12(OH) + 3H2O = 2Ca2Al8Si4O20(OH)4 (corundum + kyanite + clinozoisite + fluid = margarite). Mass balance analyses and chemical potential modeling reveal that the chemical potential gradients present between kyanite and corundum have likely driven the transport of the CaO and SiO2 components. The mylonitization is considered to take place chronologically after peak metamorphism and before the above reaction, based on the following features: approximately constant thickness of the margarite aggregates, random orientation of margarite, and local modification of garnet composition at a boudin neck that formed during mylonitization. The estimated peak temperature of 640°C and the pressure–temperature conditions of the above reaction indicate that the mylonitization took place at temperature between 530 and 640°C at pressures higher than 1.2 GPa, approximately equivalent to the depth of the lower crust of island arcs.  相似文献   
4.
ABSTRACT

Groundwater temperature at an arbitrary depth and at an arbitrary point is determined not only by heat transported by conduction but also by advection caused either by infiltration of rain, snowmelt or irrigated water, or by seepage from surface water bodies. Therefore, characteristic changes of groundwater temperature are observed in recharging and discharging areas within a groundwater flow system. The changes may be one-, two-, or three-dimensional, depending on individual situations. Since heat is a conservative quantity in the subsurface environment, groundwater temperature can be used as a tracer to reveal the regional structure of a groundwater flow system. A case study showing the importance of groundwater temperature in a regional groundwater survey is presented taking Nagaoka plain, Japan, as an example. The groundwater temperatures were measured in observation wells with diameters of 65 to 250 mm and depths of 20 m or more. Marked seasonal changes in temperature depth profiles showing advective effects in the horizontal direction from the Shinano River, and in the vertical direction from upper and lower aquifers, were observed. The temperature depth profiles were classified into six types. The distribution of these types does not contradict the regional structure of the groundwater flow system revealed by the potential distribution. As groundwater temperature is an easily measureable element in a hydrological survey, the method described in the present paper is appropriate for a field study in an uninstrumented groundwater basin.  相似文献   
5.
Abstract— Minor element (Ca, Cr, and Mn) concentrations in amoeboid olivine aggregates (AOAs) from primitive chondrites were measured and compared with those predicted by equilibrium condensation in the solar nebula. CaO concentrations in forsterite are low, particularly in porous aggregates. A plausible explanation appears that an equilibrium Ca activity was not maintained during the olivine condensation. CaO and MnO in forsterite are negatively correlated, with CaO being higher in compact aggregates. This suggests that the compact aggregates formed either by a prolonged reheating of the porous aggregates or by condensation and aggregation of forsterite during a very slow cooling in the nebula.  相似文献   
6.
The Oto-Zan lava in the Setouchi volcanic belt is composed ofphenocryst-poor, sparsely plagioclase-phyric andesites (sanukitoids)and forms a composite lava flow. The phenocryst assemblagesand element abundances change but Sr–Nd–Pb isotopiccompositions are constant throughout the lava flow. The sanukitoidat the base is a high-Mg andesite (HMA) and contains Mg- andNi-rich olivine and Cr-rich chromite, suggesting the emplacementof a mantle-derived hydrous (7 wt % H2O) HMA magma. However,Oto-Zan sanukitoids contain little H2O and are phenocryst-poor.The liquid lines of descent obtained for an Oto-Zan HMA at 0·3GPa in the presence of 0·7–2·1 wt % H2Osuggest that mixing of an HMA magma with a differentiated felsicmelt can reasonably explain the petrographical and chemicalcharacteristics of Oto-Zan sanukitoids. We propose a model wherebya hydrous HMA magma crystallizes extensively within the crust,resulting in the formation of an HMA pluton and causing liberationof H2O from the magma system. The HMA pluton, in which interstitialrhyolitic melts still remain, is then heated from the base byintrusion of a high-T basalt magma, forming an H2O-deficientHMA magma at the base of the pluton. During ascent, this secondaryHMA magma entrains the overlying interstitial rhyolitic melt,resulting in variable self-mixing and formation of a zoned magmareservoir, comprising more felsic magmas upwards. More effectiveupwelling of more mafic, and hence less viscous, magmas througha propagated vent finally results in the emplacement of thecomposite lava flow. KEY WORDS: high-Mg andesite; sanukitoid; composite lava; solidification; remelting  相似文献   
7.
Abundant foraminifers were found from the Mississippian Onimaru Formation distributed in the Hikoroichi area of the central part of the South Kitakami Belt, Northeast Japan. They include Brunsia pulchra, Archaediscus sp., Paraarchaediscus? sp., Neoarchaediscus? sp., Palaeotextularia spp., Climacammina, spp., Tetrataxis spp., Haplophragmella sp., Lituotubella? sp., Forschiella sp., Cribrospira sp., Bradyina spp., Janischewskina sp., Endothyra spp., Planoendothyra aljutovica., Endothyranopsis compressa, E. crassa, Omphalotis samarica, Eo-staffella spp., Mediocris breviscula, and several others. The Onimaru foraminiferal fauna is similar to those re-ported from MFZ (Mamet Foraminiferal Zone) 15-16. This supports a late Visean (V3b-V3c) age of the formation, which has been proposed previously by rugose corals.  相似文献   
8.
Chemical Th–U–total Pb isochron method (CHIME) monazite dating was carried out for pelitic–psammitic migmatites and the Ao granite (one of the Younger Ryoke granites) from the Aoyama area, Ryoke metamorphic belt, Southwest Japan. The Ao granite gives an unequivocal age of 79.8 ± 3.9 Ma. The monazite grains in migmatites yield an age of 96.5 ± 1.9 Ma with rims and patchy domains of 83.5 ± 2.4 Ma. The 83.5 ± 2.4‐Ma overprinting on migmatites over the garnet–cordierite zone suggests a wide and combined effect of thermal input and fluid activity on the monazite grains caused by the contact metamorphism by the Younger Ryoke granites including the Ao granite. This contact metamorphism has not been detected from the major metamorphic mineral assemblage previously, possibly because the migmatites already possessed the high‐temperature mineral assemblage before the granite intrusions and were immune from contact metamorphism in terms of major metamorphic minerals. However, monazite records contact metamorphism clearly. Therefore, the field mapping of the CHIME monazite age is a powerful tool for recognition of polymetamorphism in high‐temperature metamorphic terrains where later thermal effects can not be easily detected by the growth of new major metamorphic minerals.  相似文献   
9.
10.
This paper characterizes the metamorphic thermal structure of the Higo Metamorphic Complex (HMC) and presents the results of a numerical simulation of a geotherm with melt migration and solidification. Reconstruction of the geological and metamorphic structure shows that the HMC initially had a simple thermal structure where metamorphic temperatures and pressures increased towards apparent lower structural levels. Subsequently, this initial thermal structure has been collapsed by E–W and NNE–SSW trending high‐angle faults. Pressure and temperature conditions using the analysis of mineral assemblages and thermobarometry define a metamorphic field P–T array that may be divided into two segments: the array at apparent higher structural levels has a low‐dP/dT slope, whereas that at apparent lower structural levels has a high‐dP/dT slope. This composite array cannot be explained by heat conduction in subsolidus rocks alone. Migmatite is exposed pervasively at apparent lower structural levels, but large syn‐metamorphic plutons are absent at the levels exposed in the HMC. Transport and solidification of melt within migmatite is a potential mechanism to generate the composite array. Thermal modelling of a geotherm with melt migration and solidification shows that the composite thermal structure may be formed by a change of the dominant heat transfer from an advective regime to a conduction regime with decreasing depth. The model also predicts that strata beneath the crossing point will consist of high‐grade solid metamorphic rocks and solidified melt products, such as migmatite. This prediction is consistent with the observation that migmatite was associated with the very high‐dP/dT slope. The melt migration model is able to generate the very high‐dP/dT segment due to the high rate of heat transfer by advection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号