首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
地球物理   12篇
地质学   5篇
海洋学   2篇
自然地理   10篇
  2020年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1885年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
The carrying capacity for bivalve shellfish culture in Saldanha Bay, South Africa, was analysed through the application of the well-tested EcoWin ecological model, in order to simulate key ecosystem variables. The model was set up using: (i) oceanographic and water-quality data collected from Saldanha Bay, and (ii) culture-practice information provided by local shellfish farmers. EcoWin successfully reproduced key ecological processes, simulating an annual mean phytoplankton biomass of 7.5 µg Chl a l–1 and an annual harvested shellfish biomass of about 3 000 tonnes (t) y–1, in good agreement with reported yield. The maximum annual carrying capacity of Small Bay was estimated as 20 000 t live weight (LW) of oysters Crassostrea gigas, or alternatively 5 100 t LW of mussels Mytilus galloprovincialis, and for Big Bay as 100 000 t LW of oysters. Two production scenarios were investigated for Small Bay: a production of 4 000 t LW y–1 of mussels, and the most profitable scenario for oysters of 19 700 t LW y–1. The main conclusions of this work are: (i) in 2015–2016, both Small Bay and Big Bay were below their maximum production capacity; (ii) the current production of shellfish potentially removes 85% of the human nitrogen inputs; (iii) a maximum-production scenario in both Big Bay and Small Bay would result in phytoplankton depletion in the farmed area; (iv) increasing the production intensity in Big Bay would probably impact the existing cultures in Small Bay; and (v) the production in Small Bay could be increased, resulting in higher income for farmers.  相似文献   
2.
3.
4.
East-west-trending Mesozoic magnetic anomalies M2 through M22 have been identified in the northern Mozambique Basin. These anomalies are best matched by sea floor created at 50°S trending N120°E and spreading at a rate of around 1.5 cm/yr. The northward increase in age inferred from the identifications of these anomalies are compatible with observed decrease in the “reliable” heat flow values from 1.4 to 1.1 μcal/cm2 s to the north in the basin. The anomalies terminate in the southern part of the Mozambique Channel against a magnetic quiet zone to the north. Both the Mozambique Basin anomalies and those recently observed off Antarctica are strong evidence in favour of a Gondwanaland reconstruction that places Dronning Maud Land against southern Mozambique, and a late Jurassic or older separation between Africa and Antarctica.  相似文献   
5.
Nickel has been measured on four Geosecs profiles from the Atlantic and Pacific. The resulting distribution is oceanographically consistent: the concentration levels are over a factor of five lower than any previously reported. Values range from as low as 3 nmoles/kg in surface waters to 12 nmoles/kg in the deep North Pacific. The form of the Pacific profiles indicates that nickel is involved in the biogeochemical cycle and is regenerated both at shallow depths, like phosphate and in the deep waters like silicate. The oceanic residence time is ca. 10,000 years. While ferromanganese phases may be the ultimate sink for nickel they do not control its distribution in the water column.  相似文献   
6.
Abstract The post early Carboniferous subsidence history of the Central North Sea basin can be separated into three major periods: Permian, Triassic and post Mid-Jurassic. Prior efforts to account for this subsidence within an extensional framework have concentrated on the post Mid-Jurassic. These efforts have assumed that the effects of the previous periods of extension necessary to create the Permian and Triassic subsidence are negligible. We consider the 80-km value for the Mid-Jurassic-mid-Cretaceous extension from these efforts a reasonable upper estimate of the likely amount of extension. This value has received considerable criticism as it is almost four times as great as that determined by summing the horizontal displacement (heave) on faults observed on industry seismic lines in the area.
We treat the two earlier phases of extension as one phase and develop a method to estimate the maximum value of this extension. We use this value, with estimates of the total extension from the early Carboniferous to Present, to determine a likely minimum value for the mid-Mid-Jurassic through mid-Cretaceous extension. After justifying the use of Airy isostasy for the loading response of the lithosphere we show that the observed unloaded basement subsidence history is compatible with the parameters we derive for the pre and post Mid-Jurassic extension. Our minimum estimate of 38 km is still significantly higher than that: made by summing the heave on the faults active throughout the Upper Jurassic and lower Cretaceous.  相似文献   
7.
8.
To study the amount of heat generated by radioactive decay in the continental crust, the usual practice in the literature is to fit to the heat flow and radioactivity data a relationship of the form: Q = Qr + D · A where Q and A are the observed heat flow and radiogenic heat production. Qr is the “reduced” heat flow and D is a depth scale. This procedure implicitly assumes that uranium, thorium and potassium have identical distributions in the crust. We suggest that significant information may be lost as the three radioelements may in fact be affected by processes operating over different depths.Data published for four heat flow provinces throughout the world are used to estimate the distributions of uranium, thorium and potassium in the continental crust. These distributions are characterized by a depth scales defined as follows: Di =∫0h Ci(z)Ci(0)dz where h is the thickness of the layer containing the bulk of radioactivity and Ci(z) the concentration of element i at depth z. Three depth scales are computed from a least-squares fit to the following relationship: Q = Qr + DU · AU + DT · AT + DK · AT where Q is the observed heat flow and Qr some constant (a reduced heat flow). Ai is the heat generation rate due to the radioactive decay of element i, and Di is the corresponding depth scale.The analysis suggests that the three distributions are different and that they have the same basic features in the four provinces considered. The depth scale for potassium is large in granitic areas, that for thorium is small and that for uranium lies between the other two.We propose a simple model according to which each radioelement essentially provides a record for one process. Potassium gives a depth scale for the primary differentiation of the crust. Thorium gives the depth scale of magmatic or metamorphic fluid circulation. Finally, the uranium distribution reflects the late effects of alteration due to meteoric water. We show that the heat flow and radioactivity data are compatible with this model.Our analysis and numerical results are supported by data from deep boreholes and by geochemical evidence, such as detailed investigations of plutonic series and studies of U-Th-Pb systematics.  相似文献   
9.
10.
Data from the hot springs at the Galapagos spreading center (T = 3–13°C) show depletions of the exiting waters in Cu, Ni, Cd, Se, Cr and U relative to ambient seawater. Manganese is strongly enriched. Iron shows highly variable behavior between vent fields but is in general low. The data confirm the occurrence of extensive subsurface mixing between the primary high-temperature, acid, reducing hydrothermal fluids and “groundwater”. The composition of the latter is indistinguishable from that of the free water column adjacent to the ridge axis. The final solutions are on the boundary between those forming MnO2 crusts and those producing iron-manganese rich sediments. The suite of metal rich deposits observed at ridge crests — Mn-O, Fe-Mn-O, Fe-S — can be explained as the manifestation of the degree of subsurface mixing, decreasing from 100 : <1 to <1 : 1 across the series (assuming an end-member temperature of 350°C).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号