首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   2篇
  2024年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The biological impact of a treated produced water (PW) was investigated under controlled laboratory conditions in the blue mussel, Mytilus edulis. Mussel health status was assessed using an integrated biomarker approach in combination with chemical analysis of both water (with SPMDs), and mussel tissues. Acyl-CoA oxidase activity, neutral lipid accumulation, catalase activity, micronuclei formation, lysosomal membrane stability in digestive cells and haemocytes, cell-type composition in digestive gland epithelium, and the integrity of the digestive gland tissue were measured after 5 week exposure to 0%, 0.01%, 0.1%, 0.5% and 1% PW. The suite of biomarkers employed were sensitive to treated PW exposure with significant sublethal responses found at 0.01-0.5% PW, even though individual chemical compounds of PW were at extremely low concentrations in both water and mussel tissues. The study highlights the benefits of an integrated biomarker approach for determining the potential effects of exposure to complex mixtures at low concentrations. Biomarkers were integrated in the Integrative Biological Response (IBR/n) index.  相似文献   
2.
Snowmelt drives a large portion of streamflow in many mountain areas of the world. However, the water paths from snowmelt to the arrival of the water in the streams are still largely unknown. This work analyzes for first time the influence of snowmelt on spring streamflow with different snow accumulation and duration, in an alpine catchment of the central Spanish Pyrenees. This study presents the water balance of the main melting months (May and June). Piezometric values, water temperature, electrical conductivity and isotope data (δ18O) allow a better understanding of the hydrological functioning of the basin during these months. Results of the water balance calculations showed that snow represented on average 73% of the water available for streamflow in May and June while precipitation during these months accounted for only 27%. However, rainfall during the melting period was important to determine the shape of the spring hydrographs. On average, 78% of the sum of both the snow water equivalent (SWE) accumulated at the beginning of May and the precipitation in May and June converted into runoff during the May–June melting period. The average evaporation-sublimation during the 2 months corresponded to 8.4% of the accumulated SWE and rainfall, so that only a small part of the water input was ultimately available for soil and groundwater storage. When snow cover disappeared from the catchment, soil water storage and streamflow showed a sharp decline. Consequently, streamflow electrical conductivity, temperature and δ18O showed a marked tipping point towards higher values. The fast hydrological response of the catchment to snow and meteorological fluctuations, as well as the marked diel fluctuations of streamflow δ18O during the melting period, strongly suggests short meltwater transit times. As a consequence of this hydrological behaviour, independently of the amount of snow accumulated and of melting date, summer streamflow remained always low, with only small runoff peaks driven by rainfall events.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号