首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
测绘学   3篇
大气科学   3篇
地球物理   8篇
地质学   17篇
  2017年   3篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   4篇
  1993年   2篇
  1984年   1篇
排序方式: 共有31条查询结果,搜索用时 484 毫秒
1.
This modeling study evaluated the capability of alternative funnel-and-gate structures with three gates for capturing contaminated groundwater in a hypothetical unconfined aquifer. Simulated interceptor structures were linear and 45 m wide, consisting of three gates and two funnels (walls). One gate occupied the center and two gates occupied the ends of the interceptor structures. The structures, positioned perpendicular to regional groundwater flow, traversed the entire thickness of the aquifer. A total of four structures were evaluated (numbers designate widths of end, center, and end gates, respectively, in meters): 3-3-3, 2-5-2, 1-7-1, and 4-1-4. Particle tracking and zonal water budgets identified shapes of capture zones and discharge patterns for each interceptor structure. A mass transport model, accounting for advection and hydrodynamic dispersion, tested the capability of each structure for capturing a contaminant plume. Results suggest that: time-dependent capture zones underestimate the amount of time to capture a contaminant plume, wide center gates facilitate plume capture, and wide end gates facilitate lateral containment of contaminants. Of the structures simulated, the 2-5-2 configuration was relatively efficient at processing and containing the simulated contaminant plume.  相似文献   
2.
Recent nitrate, chloride, and bromide concentrations were studied in the Ogallala Aquifer of northwest Texas. The study included 361 wells with a median depth of 92 m in a rural area dominated by agricultural activity and oil and gas production. Only five observations surpassed the 44.3 mg/L standard for nitrate (10 mg/L NO3-N). Four other observations, and one from the preceding set, exceeded the secondary standard of 250 mg/L for chloride. Maximum concentrations were 91.2 mg/L, 1530 mg/L, and 0.70 mg/L for nitrate, chloride, and bromide, respectively. Chloride/bromide ratios covered a broad range, from 30.4 to 10930, but medians were < 160 for each of two years analyzed. There were statistically significant correlations between nitrate and chloride, and chloride and well depth. Results of this study suggest that agricultural activity has locally impacted ground water in north-west Texas. Regionally, low aquifer recharge rates have curtailed ground water contamination from potentially adverse land uses.  相似文献   
3.
Abstract

The detailed characteristics of a CASPII warm frontal passage are presented in this article. This storm, Intensive Operating Period (IOP) 13 (February 26–27, 1992), was observed in detail with an array of diverse instruments. It has the advantage over earlier freezing precipitation studies of having simultaneous, in situ and remote sensing measurements by aircraft and ground‐based Doppler radar.

The associated precipitation was in the form of banded structures parallel to the front. Within these bands were embedded precipitation cores, some parallel to the band, some perpendicular. The warm front itself was characterized by major perturbations in its kinematic and thermodynamic features. The cores oriented parallel to the front were the result of embedded convection generated, at least in part, by the irregularities in the frontal surface.

The cores oriented perpendicular to the front were closely associated with the 0°C isotherm on the underside of the frontal inversion. Precipitation phase changes played a significant role in the occurrence of wide near 0°C regions, both vertically and horizontally. These regions had a profound influence on the observed precipitation types and led to complex precipitation‐thermodynamic‐dynamic interactions. Instabilities produced by these interactions are seen in wave‐like features observed by the Doppler radar in these regions, both parallel and perpendicular to the frontal zone.  相似文献   
4.
A graphical method was devised for designing contaminant detection monitoring networks in aquifers. The approach eliminates bias in detection efficiency among well pairs, thereby improving the overall efficiency of a ground water monitoring network. In the equidistant configurations derived by the graphical approach, all wells are located the same distance from a landfill, but the distance is measured parallel to ground water flow, Measured perpendicular to ground water flow, there is also an equal spacing between wells in an equidistant network. A simulation model was used to compare an equidistant network to a peripheral monitoring configuration, in which wells were spaced evenly along the downgradient boundaries of a landfill. The equidistant network yielded a 12.4% higher detection efficiency and also facilitated earlier release detection. In practice, the graphical approach that yields equidistant configurations can be used to identify candidate monitoring networks to detect potential releases from landfills.  相似文献   
5.
Utilizing geographic information systems (GIS) and statistics, objectives of this study were to evaluate: (a) the spatial distribution of nitrate concentrations in groundwater, and (b) associations between nitrate concentrations and: proximity to playa lakes, hydraulic conductivity of soil, well depth, and land use in the High Plains Aquifer, Texas. Data were compiled from wells sampled during 2000–2008. Nitrate concentrations in approximately 9% of wells exceeded the maximum contaminant level for drinking water. Concentrations were generally higher beneath urban and agricultural land, under permeable soil, and in shallow wells (especially in the southern part of the study area). However, concentrations were lower near playa lakes. While playas focus recharge to groundwater, denitrification in reducing environments lower nitrate concentrations beneath them. This study identifies areas vulnerable to nitrate contamination that warrant continued monitoring and mitigation efforts.  相似文献   
6.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
Pumping test data for surficial aquifers are commonly analyzed under the assumption that the base of the aquifer corresponds to the bottom of the test wells (i.e., the aquifer is truncated). This practice can lead to inaccurate hydraulic conductivity estimates, resulting from the use of low saturated thickness values with transmissivity estimates, and not accounting for the effects of partially penetrating wells. Theoretical time-drawdown data were generated at an observation well in a hypothetical unconfined aquifer for various values of saturated thickness and were analyzed by standard curve-matching techniques. The base of the aquifer was assumed to be the bottom of the pumping and observation wells. The overestimation of horizontal hydraulic conductivity was found to be directly proportional to the error in assumed saturated thickness, and to the (actual) ratio of vertical to horizontal hydraulic conductivity (Kv/Kh). Inaccurately high estimates of hydraulic conductivity obtained by aquifer truncation can lead to overestimates of ground water velocity and contaminant plume spreading, narrow capture zone configuration estimates, and overestimates of available ground water resources.  相似文献   
8.
 A method was devised for designing configurations of monitoring wells, consisting of vertically nested intakes in boreholes. The network-design method involves analyzing a subset of potential contaminant plumes emerging from the downgradient margin of a landfill. Plume widths are evaluated along selected equipotential lines and compared to the lengths of those lines. The method was applied to a 32-ha solid-waste landfill in Tarrant County, Texas, USA. Sixtynine potential source nodes were considered. A 15-borehole network devised by the method registered 93 detections in total, detecting all 69 model-generated plumes by at least one borehole. Based on an enumeration procedure, a minimum of 10 boreholes was needed to detect all of the model-generated plumes. However, the less conservative 10-borehole network had little capability for backup detection. An existing monitoring network of seven downgradient wells detected only 38 model-generated plumes. Results of this study illustrate a practical need for structured approaches to designing detection-based groundwater-monitoring configurations. Received, February 1997 · Revised, July 1997, December 1997 · Accepted, November 1997  相似文献   
9.
Mapping landslide susceptibility in Travis County, Texas, USA   总被引:4,自引:0,他引:4  
A geographic information system (GIS) was used to construct a landslide hazard map for Travis County, Texas. The County is experiencing rapid growth, and development has encroached into unstable terrain that is vulnerable to landslides. Four layers of data were superimposed to create the landslide hazard map. Slope was given the most emphasis, followed by geology, vegetation, and proximity to faults. The final map shows areas of low, medium, and high landslide susceptibility. Areas of high susceptibility occupy stream and reservoir banks, rock escarpments, and agricultural land. The landslide hazard map can be a useful geologic criterion for land use planning. Planners can use the map to allocate appropriate land uses to unstable terrain, and to identify existing structures at risk from landslide activity. The methods presented in this paper can be adapted to other counties in the U.S. and elsewhere. Results of this study suggest that geographic information systems can effectively compile and overlay several data layers relevant to landslide hazards.  相似文献   
10.

Background

Forest resources supply a wide range of environmental services like mitigation of increasing levels of atmospheric carbon dioxide (CO2). As climate is changing, forest managers have added pressure to obtain forest resources by following stand management alternatives that are biologically sustainable and economically profitable. The goal of this study is to project the effect of typical forest management actions on forest C levels, given a changing climate, in the Moscow Mountain area of north-central Idaho, USA. Harvest and prescribed fire management treatments followed by plantings of one of four regionally important commercial tree species were simulated, using the climate-sensitive version of the Forest Vegetation Simulator, to estimate the biomass of four different planted species and their C sequestration response to three climate change scenarios.

Results

Results show that anticipated climate change induces a substantial decrease in C sequestration potential regardless of which of the four tree species tested are planted. It was also found that Pinus monticola has the highest capacity to sequester C by 2110, followed by Pinus ponderosa, then Pseudotsuga menziesii, and lastly Larix occidentalis.

Conclusions

Variability in the growth responses to climate change exhibited by the four planted species considered in this study points to the importance to forest managers of considering how well adapted seedlings may be to predicted climate change, before the seedlings are planted, and particularly if maximizing C sequestration is the management goal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号