首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
大气科学   1篇
地球物理   5篇
地质学   1篇
  2018年   1篇
  2008年   2篇
  2006年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Huang J  Christ JA  Goltz MN 《Ground water》2008,46(6):882-892
When managing large-scale ground water contamination problems, it is often necessary to model flow and transport using finely discretized domains--for instance (1) to simulate flow and transport near a contamination source area or in the area where a remediation technology is being implemented; (2) to account for small-scale heterogeneities; (3) to represent ground water-surface water interactions; or (4) some combination of these scenarios. A model with a large domain and fine-grid resolution will need extensive computing resources. In this work, a domain decomposition-based assembly model implemented in a parallel computing environment is developed, which will allow efficient simulation of large-scale ground water flow and transport problems using domain-wide grid refinement. The method employs common ground water flow (MODFLOW) and transport (RT3D) simulators, enabling the solution of almost all commonly encountered ground water flow and transport problems. The basic approach partitions a large model domain into any number of subdomains. Parallel processors are used to solve the model equations within each subdomain. Schwarz iteration is applied to match the flow solution at the subdomain boundaries. For the transport model, an extended numerical array is implemented to permit the exchange of dispersive and advective flux information across subdomain boundaries. The model is verified using a conventional single-domain model. Model simulations demonstrate that the proposed model operated in a parallel computing environment can result in considerable savings in computer run times (between 50% and 80%) compared with conventional modeling approaches and may be used to simulate grid discretizations that were formerly intractable.  相似文献   
2.
Eddy-correlation measurements above an uneven-aged forest, a uniform-irrigated bare soil field, and within a grass-covered forest clearing were used to investigate the usefulness of the fluxvariance method above uniform and non-uniform terrain. For this purpose, the Monin and Obukhov (1954) variance similarity functions were compared with direct measurements. Such comparisons were in close agreement for momentum and heat but not for water vapor. Deviations between measured and predicted similarity functions for water vapor were attributed to three factors: 1) the active role of temperature in surface-layer turbulence, 2) dissimilarity between sources and sinks of heat and water vapor at the ground surface, and 3) the non-uniformity in water vapor sources and sinks. It was demonstrated that the latter non-uniformity contributed to horizontal gradients that do not scale with the vertical flux. These three factors resulted in a turbulence regime that appeared more efficient in transporting heat than water vapor for the dynamic convective sublayer but not for the dynamic sublayer. The agreement between eddy-correlation measured and flux-variance predicted sensible heat flux was better than that for latent heat flux at all three sites. The flux-variance method systematically overestimated the latent heat flux when compared to eddy-correlation measurements. It was demonstrated that the non-uniformity in water vapor sources reduced the surface flux when compared to an equivalent uniform terrain subjected to identical shear stress, sensible heat flux, and atmospheric water vapor variance. Finally, the correlation between the temperature and water vapor fluctuations was related to the relative efficiency of surface-layer turbulence in removing heat and water vapor. These relations were used to assess critical assumptions in the derivation of the flux-variance formulation.  相似文献   
3.
4.
Multifractal and entropic properties of landslides in Japan   总被引:4,自引:0,他引:4  
Landslide distributions in two major areas of northern Japan, Tohoku and Hokkaido, are analysed for multifractal properties. For the latter data set, also the multifractal spectrum for the spatial landslide size distribution is determined and compared to the probability distribution. It is concluded that the fields possess definite multifractal character. This finding is supported by the known multifractality of the main triggering processes, rain and earthquakes. Further support comes from a configuration entropy analysis which is found to be a useful complimentary tool to multifractal analysis. Models leading to multifractality are briefly reviewed. Careful attention is paid to the algorithms used and to the verification of the numerical results. Some general suggestions concerning numerical methods are made.  相似文献   
5.
The purpose of this paper is to discuss the statistical distributions of recurrence times of earthquakes. Recurrence times are the time intervals between successive earthquakes at a specified location on a specified fault. Although a number of statistical distributions have been proposed for recurrence times, we argue in favor of the Weibull distribution. The Weibull distribution is the only distribution that has a scale-invariant hazard function. We consider three sets of characteristic earthquakes on the San Andreas fault: (1) The Parkfield earthquakes, (2) the sequence of earthquakes identified by paleoseismic studies at the Wrightwood site, and (3) an example of a sequence of micro-repeating earthquakes at a site near San Juan Bautista. In each case we make a comparison with the applicable Weibull distribution. The number of earthquakes in each of these sequences is too small to make definitive conclusions. To overcome this difficulty we consider a sequence of earthquakes obtained from a one million year “Virtual California” simulation of San Andreas earthquakes. Very good agreement with a Weibull distribution is found. We also obtain recurrence statistics for two other model studies. The first is a modified forest-fire model and the second is a slider-block model. In both cases good agreements with Weibull distributions are obtained. Our conclusion is that the Weibull distribution is the preferred distribution for estimating the risk of future earthquakes on the San Andreas fault and elsewhere.  相似文献   
6.
This research demonstrates that groundwater contaminated by a relatively dilute but persistent concentration of 1,4‐dioxane (1,4‐D), approximately 60 μg/L, and chlorinated aliphatic co‐contaminants (1.4 to 10 μg/L) can be efficiently and reliably treated by in situ aerobic cometabolic biodegradation (ACB). A field trial lasting 265 days was conducted at Operable Unit D at the former McClellan Air Force Base and involved establishing an in situ ACB reactor through amending recirculated groundwater with propane and oxygen. The stimulated indigenous microbial population was able to consistently degrade 1,4‐D to below 3 μg/L while the co‐contaminants trichloroethene (TCE) and 1,2‐dichloroethane (1,2‐DCA) were decreased to below 1 μg/L and 0.18 μg/L, respectively. A stable treatment efficiency of more than 95% removal for 1,4‐D and 1,2‐DCA and of more than 90% removal for TCE was achieved. High treatment efficiencies for 1,4‐D and all co‐contaminants were sustained even without propane and oxygen addition for a 2‐week period.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号