首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   1篇
大气科学   1篇
地球物理   10篇
地质学   2篇
天文学   18篇
自然地理   1篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
  1990年   1篇
  1989年   1篇
  1975年   3篇
  1970年   1篇
  1967年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Summary Early Proterozoic layered intrusions, about 2440 Ma in age, are widespread over a large area of the northeastern Fennoscandian Shield in Finland, Sweden and the Soviet Union. Only one intrusion, the Kukkola intrusion, is encountered in Sweden whereas in Finland, their number exceeds twenty. These are concentrated principally in two areas, the dicontinuous Tornio-Närdnkävaara intrusion belt which crosses northern Finland and the Koitelainen intrusion with its satellites located in central Finnish Lapland. The intrusions in the Soviet Union are concentrated in three areas: (i) on the Kola Peninsula, (ii) in the Paanajärvi area close to the Finnish border and (iii) northeast of Lake Onega.Examples of all the ore types characteristic of layered intrusions have been found in these intrusions. Chromitite layers are encountered in the Kukkola/Tornio, Kemi, Penikat, Koitelainen and Burakovsky intrusions, but only one, the Kemi chromitite, has so far been mined. The Portimo, Koillismaa, Monchegorsk and Fedorova intrusions are characterized by PGE-bearing Cu-Ni-deposits in their marginal series. Mineralized zones enriched in PGE are also encountered in the layered series. Those in the Penikat intrusion and in the Portimo intrusions are the most remarkable and the best known to date. Vanadium-bearing Fe-Ti-oxide layers are encountered in several intrusions, but only one, the Mustavaara deposit, is presently being exploited.Two types of parental magma have tentatively been proposed for these intrusions. The first type is represented by a magma which was relatively rich in magnesium and chromium and was as a whole boninitic in composition, whereas the plagioclase-rich intrusions and megacyclic units are interpreted as having crystallized from a magma which was greatly depleted in these elements, especially Cr, and had melted crustal material incorporated in it.The emplacement of the early Proterozoic layered intrusions in Fennoscandia was part of the world-wide igneous activity indicated by other layered intrusions and mafic dyke swarms of similar age in other ancient cratons, i.e. the Jimberlana intrusion in Australia, the Great Dyke in Zimbabwe, the Scouric picrite suite in Scotland, the Hearst-Matachewan dyke swarm, Copper Cliff Formation and East Bull Lake intrusion in Ontario, Canada, and the Vestfold Hills and Napier Complex dyke swarms in Antarctica. This almost contemporaneous occurrence in different parts of the world would suggest a more intimate relationship between the Fennoscandian Shield, northwest Scotland, Canadian Shield, Yilgarn Block, Zimbabwe Craton and East Antarctic Shield at the beginning of the Proterozoic than at present.
Früh-Proterozoische geschichtete Intrusionen im nordöstlichen Teil des Fennoskandischen Schildes
Zusammenfassung Im Nordost-Teil des Fennoskandischen Schildes in Finnland, Schweden und der Sowjetunion kommen fast vierzig frühproterozoische geschichtete Intrusionen, die ungefähr 2440 Mio J. alt sind, vor. Nur eine davon, die Kukkola Intrusion, liegt in Schweden, während in Finnland mehr als zwanzig Intrusionen vorkommen. Diese sind hauptsächlich in zwei Gebieten konzentriert, nämlich in dem nicht-zusammenhängenden Tornio-Näränkävaara Gürtel, der das nördliche Finnland durchzieht, und die Koitelainen-Intrusion mit ihren Satelliten im zentralen Finnischen Lapland. Die Intrusionen in der Sowjetunion sind in drei Gebieten konzentriert: (i) auf der Kola Halbinsel (ii) im Paanajärvi Gebiet nahe der Finnischen Grenze und (iii) östlich vom Onega-See.Beispiele aller für geschichtete Intrusionen charakteristischen Erztypen kommen vor. Chromititlagen sind in den Intrusionen von Kukkola/Tornio, Kemi, Penikat, Koitelainen und Burakovsky zu finden, aber nur eine davon, der Kemi Chromitit, ist bisher in Abbau genommen worden.Die Portimo-, Koillismaa-, Monchegorsk- und Fedorova-Intrusionen werden durch PGE-führende Kupfer-Nickel-Lagerstätten in ihren randlichen Bereichen charakterisiert. Mineralisierte Zonen die an PGE angereichert sind kommen auch in den geschich teten Serien vor. Die bemerkenswertesten sind die PGE-Vererzungen der Penikat- und der Portimo-Intrusionen. Vanadium-führende Fe-Ti-Oxidlagen kommen in verschiedenen Intrusionen vor, aber nur eine davon, die Mustavaara-Lagerstätte, ist bisher abgebaut worden.Diese Intrusionen werden auf zwei verschiedene Magmentypen zurückgeführt. Ersteres ist ein Magma das relativ reich an Magnesium und Chrom war und eine boninitische Zusammensetzung hatte, während die Plagioklas-reichen Intrusionen, und die megazyklischen Einheiten auf ein Magma das an diesen Elementen (besonders Cr) verarmt war, und das Krustenmaterial aufgeschmolzen hat, zurückgehen.Die Platznahme der frühproterozoischen geschichteten Intrusionen in Fennoskandien stellt einen Teil weltweiter magmatischer Aktivität dar, die durch andere geschichtete Intrusionen und mafische Gänge von fast identischem Alter in anderen alten Kratonen repräsentiert wird. Hier ist die Jimberlana-Intrusion in Australien, der Great Dyke in Zimbabwe, die Pikrit-Suite von Scourie in Schottland, die Gänge von Hearst-Matachewan, die Copper Cliff Formation und die East Bull Lake Intrusion in Ontario, Kanada ebenso wie die Gangsysteme der Vesthold Hills und des Napier Komplexes in Antarctica zu nennen. Diese fast gleichaltrigen Vorkommen in verschiedenen Teilen der Welt weisen auf eine engere Beziehung zwischen dem Fennoskandischen Schild, Nordwest-Schottland, dem Kanadischen Schild, dem Yilgarn Block, dem Zimbabwe-Craton und dem Ostantarktischen Schild zum Beginn des Proterozoikums hin.


With 7 Figures  相似文献   
2.
Hydrated minerals on Mars are most commonly found in ancient terrains dating to the first billion years of the planet’s evolution. Here we discuss the identification of a hydrated light-toned rock unit present in one Chasma of the Noctis Labyrinthus region. Stratigraphy and topography show that this alteration layer is part of a thin unit that drapes pre-existing bedrock. CRISM spectral data show that the unit contains hydrated minerals indicative of aqueous alteration. Potential minerals include sulfates such as bassanite (CaSO4·1/2H2O) or possibly hydrated chloride salts. The proximity of a smooth volcanic plain and the similar crater model age (Late Amazonian, <100 Myr) of this plain and the draping deposits suggest that the alteration layer may be formed by the interaction of water with ash layers deposited during this geologically recent volcanic activity. The alteration phases may have formed due to the presence of snow in contact with hot ash, or eventually solid-gas interactions due to the volcanic activity. The relatively young age of the volcanic plain implies that recent alteration processes have occurred on Mars in relation with volcanic activity, but such local processes do not require conditions different than the current climate.  相似文献   
3.
Variations in the frequency of tropical cyclones in the Northwest Pacific in 1961-2015 and their connection with various factors are analyzed. The examined factors are the occurrence rates of the certain patterns of atmospheric circulation (according to the Vangengeim-Girs classification) in the Pacific-American sector, sea surface temperature in the North Pacific, and the position of the North Pacific High center. Steady relationships between these parameters are revealed.  相似文献   
4.
This paper reports on the analysis of the highest spatial resolution hyperspectral images acquired by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft during its prime mission. A bright area matches a flow-like feature coming out of a caldera-like feature observed in Synthetic Aperture Radar (SAR) data recorded by the Cassini radar experiment [Lopes et al., 2007. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper. Icarus 186, 395-412, doi:10.1016/j.icarus.2006.09.006]. In this SAR image, the flow extends about 160 km east of the caldera. The contrast in brightness between the flow and the surroundings progressively vanishes, suggesting alteration or evolution of the composition of the cryolava during the lifetime of the eruptions. Dunes seem to cover part of this flow on its eastern end. We analyze the different terrains using the Spectral Mixing Analysis (SMA) approach of the Multiple-Endmember Linear Unmixing Model (MELSUM, Combe et al., 2008). The study area can be fully modeled by using only two types of terrains. Then, the VIMS spectra are compared with laboratory spectra of known materials in the relevant atmospheric windows (from 1 to 2.78 μm). We considered simple molecules that could be produced during cryovolcanic events, including H2O, CO2 (using two different grain sizes), CH4 and NH3. We find that the mean spectrum of the cryoflow-like feature is not consistent with pure water ice. It can be best fitted by linear combinations of spectra of the candidate materials, showing that its composition is compatible with a mixture of H2O, CH4 and CO2.  相似文献   
5.
Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ∼800 km north-northwest of the Huygens landing site. The crater rim-crest diameter is ∼90 km; its floor diameter is ∼60 km. A central pit/peak, 20-30 km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15 km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21° and 122° east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk “bench.” Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk’s ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest.  相似文献   
6.
We present global-scale maps of Titan from the Visual and Infrared Mapping Spectrometer (VIMS) instrument on Cassini. We map at 64 near-infrared wavelengths simultaneously, covering the atmospheric windows at 0.94, 1.08, 1.28, 1.6, 2.0, 2.8, and 5 μm with a typical resolution of 50 km/pixel or a typical total integration time of 1 s. Our maps have five to ten times the resolution of ground-based maps, better spectral resolution across most windows, coverage in multiple atmospheric windows, and represent the first spatially resolved maps of Titan at 5 μm. The VIMS maps provide context and surface spectral information in support of other Cassini instruments. We note a strong latitudinal dependence in the spectral character of Titan's surface, and partition the surface into 9 spectral units that we describe in terms of spectral and spatial characteristics.  相似文献   
7.
Titan is one of the primary scientific objectives of the NASA–ESA–ASI Cassini–Huygens mission. Scattering by haze particles in Titan's atmosphere and numerous methane absorptions dramatically veil Titan's surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4–5.2 μm. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini–Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 μm images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titan's surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak.  相似文献   
8.
Since Saturn orbital insertion in July 2004, the Cassini orbiter has been observing Titan throughout most of the northern winter season (October 2002–August 2009) and the beginning of spring, allowing a detailed monitoring of Titan’s cloud coverage at high spatial resolution with close flybys on a monthly basis. This study reports on the analysis of all the near-infrared images of Titan’s clouds acquired by the Visual and Infrared Mapping Spectrometer (VIMS) during 67 targeted flybys of Titan between July 2004 and April 2010.The VIMS observations show numerous sporadic clouds at southern high and mid-latitudes, rare clouds in the equatorial region, and reveal a long-lived cloud cap above the north pole, ubiquitous poleward of 60°N. These observations allow us to follow the evolution of the cloud coverage during almost a 6-year period including the equinox, and greatly help to further constrain global circulation models (GCMs). After 4 years of regular outbursts observed by Cassini between 2004 and 2008, southern polar cloud activity started declining, and completely ceased 1 year before spring equinox. The extensive cloud system over the north pole, stable between 2004 and 2008, progressively fractionated and vanished as Titan entered into northern spring. At southern mid-latitudes, clouds were continuously observed throughout the VIMS observing period, even after equinox, in a latitude band between 30°S and 60°S. During the whole period of observation, only a dozen clouds were observed closer to the equator, though they were slightly more frequent as equinox approached.We also investigated the distribution of clouds with longitude. We found that southern polar clouds, before disappearing in mid-2008, were systematically concentrated in the leading hemisphere of Titan, in particular above and to the east of Ontario Lacus, the largest reservoir of hydrocarbons in the area. Clouds are also non-homogeneously distributed with longitude at southern mid-latitudes. The n = 2-mode wave pattern of the distribution, observed since 2003 by Earth-based telescopes and confirmed by our Cassini observations, may be attributed to Saturn’s tides.Although the latitudinal distribution of clouds is now relatively well reproduced and understood by the GCMs, the non-homogeneous longitudinal distributions and the evolution of the cloud coverage with seasons still need investigation. If the observation of a few single clouds at the tropics and at northern mid-latitudes late in winter and at the start of spring cannot be further interpreted for the moment, the obvious shutdown of the cloud activity at Titan’s poles provides clear signs of the onset of the general circulation turnover that is expected to accompany the beginning of Titan’s northern spring. According to our GCM, the persistence of clouds at certain latitudes rather suggests a ‘sudden’ shift in near future of the meteorology into the more illuminated hemisphere. Finally, the observed seasonal change in cloud activity occurred with a significant time lag that is not predicted by our model. This may be due to an overall methane humidity at Titan’s surface higher than previously expected.  相似文献   
9.
We report the discovery of organic sedimentary deposits at the bottom of dry lakebeds near Titan’s north pole in observations from the Cassini Visual and Infrared Mapping Spectrometer (VIMS). We show evidence that the deposits are evaporitic, making Titan just the third known planetary body with evaporitic processes after Earth and Mars, and is the first that uses a solvent other than water.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号