首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地球物理   8篇
地质学   3篇
自然地理   2篇
  2022年   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2011年   3篇
  2007年   2篇
  2004年   1篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
1.
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single‐bent two‐span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground motion intensity measures (IMs) is required. Results of a parametric study examining a range of highway bridge configurations subjected to selected sets of horizontal and vertical ground motions are used to determine the structural parameters that are significantly amplified by the vertical excitations. The amplification in these parameters is modeled using simple equations that are functions of horizontal and vertical spectral accelerations at the corresponding horizontal and vertical fundamental periods of the bridge. This paper describes the derivation of seismic demand models developed for typical highway overcrossings by incorporating critical EDPs and combined effects of horizontal and vertical ground motion IMs depending on the type of the parameter and the period of the structure. These models may be used individually as risk‐based design tools to determine the probability of exceeding the critical levels of EDP for pre‐determined levels of ground shaking or may be included explicitly in probabilistic seismic risk assessments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
Erduran  M.  Oreshin  S.  Vinnik  L.  Çakır  Ö.  Makeyeva  L. 《Journal of Seismology》2022,26(2):265-281
Journal of Seismology - By using P and S wave receiver functions and P and S wave travel time residuals, we have found velocity models for 16 seismograph stations in Eastern Anatolia. Our study is...  相似文献   
3.
The effects of Rayleigh damping model on the engineering demand parameters of two steel moment‐resisting frame buildings were evaluated. Two‐dimensional models of the buildings were created and response history analysis were conducted for three different hazard levels. The response history analysis results indicate that mass‐proportional damping leads to high damping forces compared with restoring forces and may lead to overestimation of floor acceleration demands for both buildings. Stiffness‐proportional damping, on the other hand, is observed to suppress the higher‐mode effects in the nine‐story building resulting in lower story drift demands in the upper floors compared with other damping models. Rayleigh damping models, which combine mass‐proportional and stiffness‐proportional components, that are anchored at reduced modal frequencies lead to reasonable damping forces and floor acceleration demands for both buildings and does not suppress higher‐mode effects in the nine‐story building. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
4.
The teleseismic P receiver functions are customarily inverted to attain the seismic velocities beneath a seismic station. Surface wave dispersion data are often added to reduce the effect of the non-uniqueness. The combination of P receiver function and surface wave works well in resolving the structures in the crust and uppermost mantle, but is less effective in characterizing greater (lithosphere and asthenosphere) depths due to the interference from crustal multiples. A solution to this problem is jointly to model teleseismic S receiver functions with surface wave and P receiver functions. This study adopts a fast, one-dimensional (1-D) inversion scheme. To avoid the effect of multidimensional structures away from the seismic station, we eliminate multiples that reverberate between the surface and interfaces below a restriction depth (RD), as well as S-to-P conversions below an inversion depth (ID). P-to-S conversions off the interfaces above the half-space and S-to-P conversions above the ID and multiples above the RD are properly modelled. This approach favours ray paths travelling close to stations and is, therefore, more suitable for 1-D inversions. We perform numerical experiments with and without noise and highlight the advantages of a joint receiver function and surface wave analysis.  相似文献   
5.
The northeast part of Turkey is prone to landslides because of the climatic conditions, as well as geologic and geomorphologic characteristics of the region. Especially, frequent landslides in the Rize province often result in significant damage to people and property. Therefore, in order to mitigate the damage from landslides and help the planners in selecting suitable locations for implementing development projects, especially in large areas, it is necessary to scientifically assess susceptible areas. In this study, the frequency ratio method and the analytical hierarchy process (AHP) were used to produce susceptibility maps. Especially, AHP gives best results because of allowing better structuring of various components, including both objective and subjective aspects and comparing them by a logical and thorough method, which involves a matrix-based pairwise comparison of the contribution of different factors for landslide. For this purpose, lithology, slope angle, slope aspect, land cover, distance to stream, drainage density, and distance to road were considered as landslide causal factors for the study area. The processing of multi-geodata sets was carried out in a raster GIS environment. Lithology was derived from the geological database and additional field studies; slope angle, slope aspect, distance to stream, distance to road and drainage density were invented from digital elevation models; land cover was produced from remote sensing imagery. In the end of study, the results of the analysis were verified using actual landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.  相似文献   
6.
In this study, the multi‐intensity seismic response of code‐designed conventional and base‐isolated steel frame buildings is evaluated using nonlinear response history analysis. The results of hazard and structural response analysis for three‐story braced‐frame buildings are presented in this paper. Three‐dimensional models for both buildings are created and seismic response is assessed for three scenario earthquakes. The response history analysis results indicate that the design objectives are met and the performance of the isolated building is superior to the conventional building in the design event. For the Maximum Considered Earthquake, isolation leads to reductions in story drifts and floor accelerations relative to the conventional building. However, the extremely high displacement demands of the isolation system could not be accommodated under normal circumstances, and creative approaches should be developed to control displacements in the MCE. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
8.
The intrinsic dissipation and scattering attenuation in southwestern (SW) Anatolia, which is a tectonically active region, is studied using the coda waves. First the coda quality factor (Qc) assuming single scattering is estimated from the slope of the coda-wave amplitude decay. Then the Multiple Lapse Time Window (MLTW) analysis is performed with a uniform earth model. Three non-overlapping temporal data windows are used to calculate the scattered seismic energy densities against the source-receiver distances, which, in turn, are used to calculate separate estimates of the intrinsic and scattering factors. In order to explore the frequency dependency, the observed seismograms are band pass-filtered at the center frequencies of 0.75, 1.5, 3.0, 6.0 and 12.0. The scattering attenuation (Qs−1) is found lower than the intrinsic attenuation (Qi−1) at all frequencies except at 0.75 Hz where the opposite is observed. Overall the intrinsic attenuation dominates over the scattering attenuation in the SW Anatolia region. The integrated energy curves obtained for the first energy window (i.e., 0–15 s) are somewhat irregular with distance while the second (i.e., 15–30 s) and third (i.e., 30–45 s) data windows exhibit more regular change with distance at most frequencies. The seismic albedo B0 is determined as 0.61 at 0.75 Hz and 0.34 at 12.0 Hz while the total attenuation factor denoted by Le−1 changes in the range 0.034–0.017. For the source-station range 20–180 km considered the scattering attenuation is found strongly frequency dependent given by the power law Qs−1 = 0.010*f−1.508. The same relations for Qi−1, Qt−1 (total), Qc−1 and (expected) hold as Qi−1 = 0.0090*f−1.17, Qt−1 = 0.019*f−1.31, Qc−1 = 0.008*f−0.84 and respectively. Compared to the other attenuation factors Qc−1 and are less dependent on the frequency.  相似文献   
9.
The Nev?ehir Castle region located in the middle of Cappadocia with approximately cone shape is investigated for the existence of an underground city using the geophysical method of electrical resistivity tomography. Underground cities are commonly known to exist in Cappadocia. The current study has obtained important clues that there may be another one under the Nev?ehir Castle region. Several 2.5-D resistivity profiles totaling approximately 4 km in length surrounding the Nev?ehir Castle are measured to determine the distribution of electrical resistivities under the study area. Several high resistivity anomalies with a depth range 8–20 m are discovered to associate with a systematic void structure beneath the Nev?ehir Castle. Because of the high-resolution resistivity measurement system currently employed, we were able to isolate the void anomalies from the embedding structure. Using 3-D visualization techniques, we show the extension of the void structure under the measured profiles.  相似文献   
10.
We use teleseismic three-component digital data from the Trabzon, Turkey broadband seismic station TBZ to model the crustal structure by the receiver function method. The station is located at a structural transition from continental northeastern Anatolia to the oceanic Black Sea basin. Rocks in the region are of volcanic origin covered by young sediments. By forward modelling the radial receiver functions, we construct 1-D crustal shear velocity models that include a lower crustal low-velocity zone, indicating a partial melt mechanism which may be the source of surfacing magmatic rocks and regional volcanism. Within the top 5 km, velocities increase sharply from about 1.5 to 3.5 km s−1. Such near-surface low velocities are caused by sedimentation, extending from the Black Sea basin. Velocities at around 20 km depth have mantle-like values (about 4.25 km s−1 ), which easily correlate to magmatic rocks cropping out on the surface. At 25 km depth there is a thin low-velocity layer of about 4.0 km s−1. The average Moho velocity is about 4.6 km s−1, and its depth changes from 32 to 40 km. Arrivals on the tangential components indicate that the Moho discontinuity dips approximately southwards, in agreement with the crustal thickening to the south. We searched for the solution of receiver functions around the regional surface wave group velocity inversion results, which helped alleviate the multiple solution problem frequently encountered in receiver function modelling.
Station TBZ is a recently deployed broadband seismic station, and the aim of this study is to report on the analysis of new receiver function data. The analysis of new data in such a structurally complex region provides constraining starting models for future structural studies in the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号