首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地球物理   17篇
海洋学   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1989年   1篇
  1987年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Data of neutral meridional wind obtained by the meteor radar at Esrange and data of temperature and pressure measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere–Ionosphere–Mesosphere Energetics and Dynamics (TIMED) spacecraft were studied with respect to a day-to-day atmospheric variability with periods ranging from 1.5 to 5 days. The detailed analysis was carried out for February 2004. Perturbations of the atmospheric parameters at the examined periods appeared mainly as eastward-propagating waves of zonal wavenumbers 1 and 2. We suggested that these waves excited by the jet instability on both flanks of the polar-night jet in the upper stratosphere and mesosphere interact nonlinearly with each other, and this interaction generates secondary waves. The radar observed both primary and secondary waves at mesospheric heights. The data analysis supports this suggestion. Under conditions of weaker instability observed in February 2003 the perturbations of atmospheric parameters of periods ranging from 1.5 to 5 days had smaller amplitudes at heights of the mesosphere than those in February 2004. It was found that the Eliassen-Palm fluxes calculated for the waves generated by the jet instability were mainly downward directed. This result suggests a possible dynamical influence of the mesospheric layers on the lower atmospheric levels.  相似文献   
2.
A new single-station model (SSM) for monthly median values of the ionospheric parameters foF2 and M(3000)F2 has been developed. Fourier analysis provides a tool for decomposing the time-varying ionospheric parameters. The 12–month smoothed sunspot number R 12 was used as an external solar characteristic because of its availability and predictability. However, for the first time, the solar activity is described not only by R 12 , but also by the linear coefficient K R representing the tendency of the change of solar activity. A general non-linear approximation of the influence of the solar-cycle characteristics R 12 and K R and ionospheric parameters foF2 and M(3000)F2 was accepted. The new SSM is applied to several European stations and its statistical evaluation shows better results than the other two SSMs used in the paper. The approach described in the paper does not contradict the use of different synthetic ionospheric indices (as the T-index, MF2–index); the basic aim is to show only that using one additional new characteristic of the solar-cycle variations, such as K R , improves the monthly median model.  相似文献   
3.
The continuous increase in concentration of greenhouse gases in the atmosphere is expected to cool higher levels of the atmosphere. There is some direct and indirect experimental evidence of long-term trends in temperature and other parameters in the mesosphere and lower thermosphere (MLT). Here we look for long-term trends in the annual and semiannual variations of the radio wave absorption in the lower ionosphere, which corresponds to the MLT region heights. Data from central and southeastern Europe are used. A consistent tendency to a positive trend in the amplitude of the semiannual wave appears to be observed. The reality of a similar tendency in the amplitude of the annual wave is questionable in the sense that the trend in the amplitude of the annual wave is probably induced by the trend in the yearly average values of absorption. The phases of both the annual and semiannual waves display a forward tendency, i.e. shift to an earlier time in the year. A tentative interpretation of these results in terms of changes of the seasonal variation of temperature and wind at MLT heights does not contradict the trends observed in those parameters.  相似文献   
4.
The CRISTA/MAHRSI experiment on board a space shuttle was accompanied by a broad campaign of rocket, balloon and ground-based measurements. Supporting lower ionospheric ground-based measurements were run in Europe and Eastern Asia between 1 October–30 November, 1994. Results of comparisons with long ionospheric data series together with short-term comparisons inside the interval October-November, 1994, showed that the upper middle atmosphere (h =80–100 km) at middle latitudes of the Northern Hemisphere in the interval of the CRISTA/MAHRSI experiment (4–12 November, 1994) was very close to its expected climatological state. In other words, the average results of the experiment can be used as climatological data, at least for the given area/altitudes. The role of solar/geomagnetic and “meteorological” control of the lower ionosphere is investigated and compared with the results of MAP/WINE, MAC/SINE and DYANA campaigns. The effects of both solar/geomagnetic and global meteorological factors on the lower ionosphere are found to be weak during autumn 1994 compared to those in MAP/WINE and DYANA winters, and they are even slightly weaker than those in MAP/SINE summer. The comparison of the four campaigns suggests the following overall pattern: in winter the lower ionosphere at northern middle latitudes appears to be fairly well “meteorologically” controlled with a very weak solar influence. In summer, solar influence is somewhat stronger and dominates the weak “meteorological” influence, but the overall solar/meteorological control is weaker than in winter. In autumn we find the weakest overall solar/meteorological control, local effects evidently dominate.  相似文献   
5.
The harmonic relationship between the diurnal and semidiurnal tides gives rise to an elementary mathematical relationship that has intriguing consequences for secondary waves produced by non-linear interactions between the diurnal tide and planetary waves. A speculative theory is developed which predicts that, under certain conditions, these secondary waves can be amplified by non-linear interaction with the semidiurnal tide. A peculiar feature of dynamics in the MLT region above Bulgaria is the presence of strong oscillations with periods near 20 and 30 h, especially in the zonal wind component. Observational evidence from a meteor radar at Yambol, Bulgaria suggests that the 20- and 30-h signals are produced as the result of non-linear interactions of the type proposed by the novel theory.  相似文献   
6.
Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW) activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.  相似文献   
7.
The present paper focuses on planetary wave type responses of the thermosphere/ionosphere system to forcing from above and below during the Arctic winter of 2005/2006. The forcing from above is described by the sunspot numbers, the solar wind speed, the Bz-component of the IMF and the geomagnetic Kp-index, while the forcing from below, i.e. by upward propagating atmospheric waves, is represented by the SABER/TIMED temperatures. The observed global ionospheric zonally symmetric oscillations with periods of ~9, ~14 and ~24–27 days were approved to be of solar origin. The most persistent ~9-day oscillation is linked to a triad of solar coronal holes distributed roughly 120° apart in solar longitude. The ~18-day westward propagating wave with zonal wavenumber 1, observed in the ionospheric currents (detected by magnetometer data), and in the F-region plasma (foF2 and TEC) could be allocated to a simultaneous 18-day westward propagating planetary wave observed in the stratosphere/mesosphere/lower thermosphere region with large (~70 km) vertical wavelength.  相似文献   
8.
On the basis of MEM spectrum analysis, the main planetary scale fluctuations formed in the lower ionosphere are studied over a period of 3–25 days during the CRISTA campaign (October-November 1994). Three dominant period bands are found: 3–5, 6–8 and 15–23 (mainly 16–18) days. For 7–8 and 16–18 day fluctuations, propagation was eastward with wave numbers K = 3 and K = 1, respectively. The magnitude of planetary wave activity in the mid-latitudes of the Northern Hemisphere during the CRISTA campaign seems to be fairly consistent with the expected undisturbed normal/climatological state of the atmosphere at altitudes of 80–100 km.  相似文献   
9.
The response of the critical frequency of the ionosphere F2–layer, described by its main Fourier components (daily constant, diurnal and semidiurnal waves) and the lower thermosphere dynamics to the geomagnetic storms in July 1991 and February 1992 is studied. The daily constant displays a negative response, however, the magnitude of reaction depends on the season and latitude. The amplitudes of diurnal and semidiurnal waves increase during a geomagnetic storm, as this enhancement is very strong at high latitudes in winter. The prevailing neutral wind, especially the zonal wind, shows an inclination to decrease during the geomagnetic storm (the effect is more distinct in summer). The amplitudes of diurnal and semidiurnal tides also demonstrate a tendency toward reduction during high geomagnetic activity.  相似文献   
10.
The stratosphere–mesosphere response to the major sudden stratospheric warming (SSW) in the winter of 2003/2004 has been studied. The UKMO (UK Meteorological Office) data set was used to examine the features of the large-scale thermodynamic anomalies present in the stratosphere of the Northern Hemisphere. The vertical and latitudinal structure of the genuine anomalies, emphasized by removing the UKMO climatology, has been investigated as well. The features of the stratospheric anomalies have been related to the mesospheric ones in measured neutral winds from radars and temperatures from meteor radars (90 km). It was found that the stratospheric warming spread to the lower mesosphere, while cooling occurred in the upper mesosphere, a feature that may be related to the large vertical scales of the stationary planetary waves (SPWs). It was shown also that the beginning of the eastward wind deceleration in the stratosphere–mesosphere system coincided with the maximum amplification of the SPW1 accompanied by short-lived bursts of waves 2 and 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号