首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   8篇
测绘学   2篇
地球物理   42篇
地质学   6篇
海洋学   3篇
天文学   3篇
自然地理   5篇
  2023年   1篇
  2018年   2篇
  2017年   2篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有61条查询结果,搜索用时 15 毫秒
1.
Chih Hoong Sin 《Area》2003,35(3):305-312
The intersubjective dialogic exercise through which identities and knowledge are constructed exists in a dialectic relation with the 'place' of the interview. The in situ nature of interviewing should not be overlooked. Two case studies of interviews conducted with older people in Britain about their social network and support are used to illuminate two aspects of the socio-spatial construction of interview data. First, interview sites can yield important information about the way participants construct their individual and social identities. Second, such identities can influence interviewer–interviewee dynamics.  相似文献   
2.
Soil vapour extraction (SVE) is a common remediation technique for cleaning up unsaturated soils contaminated by volatile organic compounds (VOCs). Analytical solutions, which result from simple mathematical models, can allow the fast approximation of the time‐dependent effluent concentration and the gaining of insight into the processes that take place during soil remediation. Deriving the analytical solutions to advection–dispersion equations that simultaneously take into account the mechanical dispersion and molecular diffusion is very difficult because of the variable dependence of governing equations' coefficients. In this study, we first present two simplified analytical solutions that only consider mechanical dispersion or molecular diffusion. The two developed analytical solutions are compared with the numerical solution that simultaneously considers both mechanical dispersion and molecular diffusion to examine the applicability of the two simplified analytical solutions and distinguishes the individual contribution of the mechanical dispersion and molecular diffusion to total VOCs transport in an SVE system. Results show that dispersion plays an important role during SVE decontamination and neither the diffusion‐dominated solution nor the dispersion‐dominated solution can agree well with the numerical solution when both mechanical dispersion and molecular diffusion have significant contributions to the total VOCs transport flux. A composite analytical solution that linearly couples the diffusion‐ and dispersion‐dominated analytical solutions, which is proposed herein to eliminate the discrepancy between the analytical solutions and the numerical solution. Results indicate that the proposed composite analytical solution agrees well with the numerical solution and is an effective tool for quickly and accurately evaluating the time‐dependent effluent concentration for parameters of the different ranges of interest in an SVE remedial system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
4.
5.
This paper develops a two‐stage optimum design procedure for multiple tuned mass dampers (MTMD) to reduce structural dynamic responses with the limitation of MTMD's stroke. A new performance index, which is a linear combination of structural response ratio and MTMD stroke ratio by a weighting factor α, is proposed; α is in the range from 0 to 1.0. The larger the α, the more important the stroke. The case of α=1.0 indicates that MTMD is locked. The analytical results show that the MTMD's stroke can be significantly suppressed with little sacrifice of structural control effectiveness when an appropriate α is selected. To verify the design algorithm, a 360 kg‐MTMD composed of five TMD units arranged in parallel was fabricated. Shaking table tests of a large‐scale three‐story building with and without the MTMD under earthquake excitations were conducted at the National Center for Research on Earthquake Engineering (NCREE) in Taiwan. The experimental results show that MTMD is not only effective in mitigating the building responses but also is successful in suppressing its stroke. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
Estimating overland flow erosion capacity using unit stream power   总被引:2,自引:0,他引:2  
Soil erosion caused by water flow is a complex problem. Both empirical and physically based approaches were used for the estimation of surface erosion rates. Their applications are mainly limited to experimental areas or laboratory studies. The maximum sediment concentration overland flow can carry is not considered in most of the existing surface erosion models. The lack of erosion capacity limitation may cause over estimations of sediment concentration. A correlation analysis is used in this study to determine significant factors that impact surface erosion capacity. The result shows that the unit stream power is the most dominant factor for overland flow erosion which is consistent with experimental data. A bounded regression formula is used to reflect the limits that sediment concentration cannot be less than zero nor greater than a maximum value. The coefficients used in the model are calibrated using published laboratory data. The computed results agree with laboratory data very well. A one dimensional overland flow diffusive wave model is used in conjunction with the developed soil erosion equation to simulate field experimental results. This study concludes that the non-linear regression method using unit stream power as the dominant factor performs well for estimating overland flow erosion capacity.  相似文献   
7.
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
8.
9.
A method is proposed for calculating the equivalent hydraulic conductivity (EHC) within a finite difference block (FDB). Application of the constant‐flux assumption of Darcy's Law, the EHC equals to the integration of effective hydraulic conductivity (Kw) as a function of pressure head (hw) divided by the head difference at the ends of the FDB. Error analysis show that the constant‐flux (CF) EHC estimates are better than those computed by the commonly used arithmetic‐mean (AM), geometric‐mean (GM), and harmonic‐mean (HM) techniques. CF EHC results are even more superior at larger interblock head difference situations. Simulations of water infiltration experiments show that simulations using the CF EHC or AM or GM weighting technique have only slight difference while applying the Neumann type boundary condition at the ground surface. In case of the Dirichlet type boundary condition, however, the CF EHC is superior to the other two in correctly estimating the depth of infiltration while enlarging the grid size. Therefore, it is recommended to adopt the CF EHC with a larger grid size to the more stable and more efficient results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
10.
Sediment movement in rivers is a complex phenomenon. The rate of sediment transport is related to many variables such as water discharge, average flow velocity, stream power, energy slope, shear stress, water depth, particle size, water temperature, and strength of turbulence. Different theories of sediment transport were developed by assuming different independent variables as the dominant variables. This survey provides a comprehensive review of the important theories of incipient motion and sediment transport. It discusses basic concepts and findings upon which knowledge of sediment transport is based and presents mathematical derivations and equations only in sufficient detail to illustrate some basic concepts. Data collected from natural rivers and laboratory flumes are used to compare the accuracy and applicability of different sediment transport equations. Finally, procedures are suggested for selecting sediment transport equations under different flow and sediment conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号