首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   5篇
  国内免费   3篇
大气科学   2篇
地球物理   17篇
地质学   30篇
海洋学   3篇
天文学   4篇
自然地理   2篇
  2022年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  2000年   4篇
  1996年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1969年   1篇
排序方式: 共有58条查询结果,搜索用时 109 毫秒
1.
Three types of enrichment processes may be distinguished inspinel peridotite mantle xenoliths from the West Eifel (Germany):
  1. Enrichmentof light rare earth elements (LREE) occurs in wholerocks andclinopyroxenes in conjunction with the formation ofTi-pooramphiboles (<0•5%) in a low-tempetature suite(900C).
  2. Enrichment in high field strength elements (HFSE; Ti and Hf)is associated with strong zoning of TiO2 in amphibole adjacentto mica hornblendite veins. A reheating from 900 to 1050C associatedwith this vein formation is reflected by the zoning profilesin orthopyroxenes with Ca, Al, and Cr increasing from core torim.
  3. Moderate enrichment of LREE without amphibole formationin ahigh-temperature suite (1125C) is observed at the contactofperidotites to pyroxenite veins yielding the same temperature.
  4. Based on geochemical and isotopic evidence, enrichment process(1) is inferred to be due to interaction of peridotites fromthe subcrustal lithosphere with low-density fluids. Process(2) represents a subsequent interaction of amphibole-bearingperidotites formed during the first process with basic meltsmoving through a system of cross-cutting dykes and veins. Processes(2) and (3) are linked to the Quaternary West Eifel volcanism.Geothermobarometry of the xenoliths shows that these processesare related to different depth regimes of the lower lithosphere.
  相似文献   
2.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro Basin of north Texas, was studied to define geochemical controls on radionuclides such as 90Sr and 226Ra. Published solubility data for gypsum, anhydrite, celestite, barite and RaSO4 were first reevaluated, in most cases using the ion interaction approach of Pitzer, to determine solubility products of the sulfates as a function of temperature and pressure. Ionic strengths of the brines were from 2.9 to 4.8 m, their temperatures and pressures up to 40°C and 130 bars. Saturation indices of the sulfates were computed with the ion-interaction approach in one brine from the arkosic granite wash fades and four from the carbonate Wolfcamp Formation. All five brines are saturated with respect to gypsum, anhydrite and celestite, and three of the five with respect to barite. All are undersaturated by from 5 to 6 orders of magnitude with respect to pure RaSO4. 226Ra concentrations in the brines, which ranged from 10?11.3 to 10?12.7 m, are not controlled by RaSO4 solubility or adsorption, but possibly by the solubility of trace Ra solid solutions in sulfates including celestite and barite.  相似文献   
4.
The performances of least-squares orthogonal polynomial and relaxation techniques in the separation of regional and residual anomalies have been evaluated with a view to minimizing personal biasing. The advantage of orthogonal over nonorthogonal polynomials is their ability to estimate an optimum order of polynomial to represent the predominant regional trend in the data using an approximate 2D difference table, the Z-matrix. The correlation coefficients between residuals of two consecutive orders also give the same result. In the relaxation technique, a linear trend is assumed within each cell of the mesh of a square grid. A set of such linear segments can approximate any complicated regional trend. The performances of these two techniques have been evaluated using simulated gravity anomalies produced by 2D and 3D complex regional structures superimposed on residual fields due to cylinders and prismatic bodies, as well as three field examples taken from the published literature. The analyses have revealed that the relaxation technique produces excellent results when an optimum polynomial order rather than an arbitrary fixed one is used for computing the boundary conditions along the periphery of the map. Analyses have revealed that such boundary conditions provide minimum distortion near the two ends of the profile.  相似文献   
5.
The mid-Holocene eruptive products of Nevado de Longavívolcano (36·2°S, Chile) are the only reported occurrenceof adakitic volcanic rocks in the Quaternary Andean SouthernVolcanic Zone (33–46°S). Dacites of this volcano arechemically distinct from other evolved magmas of the regionin that they have high La/Yb (15–20) and Sr/Y (60–90)ratios and systematically lower incompatible element contents.An origin by partial melting of high-pressure crustal sourcesseems unlikely from isotopic and trace element considerations.Mafic enclaves quenched into one of the dacites, on the otherhand, constitute plausible parental magmas. Dacites and maficenclaves share several characteristics such as mineral chemistry,whole-rock isotope and trace element ratios, highly oxidizingconditions (NNO + 1·5 to >NNO + 2, where NNO is thenickel–nickel oxide buffer), and elevated boron contents.A two-stage mass-balance crystal fractionation model that matchesboth major and trace elements is proposed to explain magmaticevolution from the least evolved mafic enclave to the dacites.Amphibole is the main ferromagnesian phase in both stages ofthis model, in agreement with the mineralogy of the magmas.We also describe cumulate-textured xenoliths that correspondvery closely to the solid assemblages predicted by the model.We conclude that Nevado de Longaví adakitic dacites arethe products of polybaric fractional crystallization from exceptionallywater-rich parent magmas. These basaltic magmas are inferredto be related to an exceptionally high, but transient inputof slab-derived fluids released from serpentinite bodies hostedin the oceanic Mocha Fracture Zone, which projects beneath Nevadode Longaví. Fractional crystallization that is modallydominated by amphibole, with very minor garnet extraction, isa mechanism for generating adakitic magmas in cold subductionzones where a high flux of slab-derived fluids is present. KEY WORDS: adakite; amphibole; Andes; differentiation; Southern Volcanic Zone  相似文献   
6.
Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt   总被引:3,自引:0,他引:3  
Geochemical studies of Plio-Quaternary volcanic rocks from theValle de Bravo–Zitácuaro volcanic field (VBZ) incentral Mexico indicate that slab melting plays a key role inthe petrogenesis of the Trans-Mexican Volcanic Belt. Rocks fromthe VBZ are typical arc-related high-Mg andesites, but two differentrock suites with distinct trace element patterns and isotopiccompositions erupted concurrently in the area, with a traceelement character that is also distinct from that of other Mexicanvolcanoes. The geochemical differences between the VBZ suitescannot be explained by simple crystal fractionation and/or crustalassimilation of a common primitive magma, but can be reconciledby the participation of different proportions of melts derivedfrom the subducted basalt and sediments interacting with themantle wedge. Sr/Y and Sr/Pb ratios of the VBZ rocks correlateinversely with Pb and Sr isotopic compositions, indicating thatthe Sr and Pb budgets are strongly controlled by melt additionsfrom the subducted slab. In contrast, an inverse correlationbetween Pb(Th)/Nd and 143Nd/144Nd ratios, which extend to lowerisotopic values than those for Pacific mid-ocean ridge basalts,indicates the participation of an enriched mantle wedge thatis similar to the source of Mexican intraplate basalts. In addition,a systematic decrease in middle and heavy rare earth concentrationsand Nb/Ta ratios with increasing SiO2 contents in the VBZ rocksis best explained if these elements are mobilized to some extentin the subduction flux, and suggests that slab partial fusionoccurred under garnet amphibolite-facies conditions. KEY WORDS: arcs; mantle; Mexico; sediment melting; slab melting  相似文献   
7.
A general mixing equation with applications to Icelandic basalts   总被引:4,自引:0,他引:4  
The mixing equation applied by Vollmer [1] to Pb and Sr isotope ratios is shown to be a general equation applicable to consideration of element and isotope ratios. The mixing equation is hyperbolic and has the form:Ax + Bxy + Cy + D = 0where the coefficients are dependent on the type of plot considered: i.e. ratio-ratio, ratio-element, or element-element. Careful use of this equation permits testing whether mixing is a viable process, places constraints on end member compositions, allows distinction between mixing of sources and mixing of magmas, and should allow distinction between recent mixing and long-term evolution of sources.The available chemical data for postglacial basalts from Iceland and along the Reykjanes Ridge are not consistent with either mixing of magmas or simple mixing of an enriched ocean island source with a depleted ocean ridge source. If the available analyses for basalts are representative of the source regions, the data are consistent with at least two models neither of which can be properly tested with the available data.(1) There are two separate mixing trends: one beneath Iceland with the alkali basalt source and a depleted Iceland source as end members; the second along the Reykjanes Ridge with a heterogeneous ocean ridge basalt source and a source similar to that for intermediate basalts on Iceland as end members. The depleted Iceland source and the depleted ocean ridge source are not the same.(2) The chemistry of the basalts is not determined by mixing. Instead the basalts are derived from a multiplicity of sources with a similar history which have been isolated for hundreds of millions of years.  相似文献   
8.
Major elements can be modelled in ways similar to the quantitative petrogenetic modelling used for trace elements. In contrast to modelling with trace elements, however, modelling with major elements is constrained by the stoichiometry of the solid phases. Within these constraints, the same equations for partial melting and crystallization which have been used to such advantage for trace elements may be used for major elements.Calculated MgO and FeO abundances in a mantle-melt system are used as an example of the modelling technique. Such modelling yields limited fields of permissible melts and residues for a given parent composition, but does not give the paths of melting. It does allow the temperature and extent of melting which gave rise to a melt to be determined from the MgO and FeO abundances of the melt or residual solid. Applying the results of the modelling to igneous rocks and ultramafic nodules leads to the following conclusions, which are subject to the uncertainties in the available distribution coefficients. Least differentiated basalt glasses from the ocean floor are derived from parent melts with less than 15.5 weight % MgO and 8.2 wt. % FeO. Komatiites may be derived by less than 60% melting of a pyrolite source leaving a residue of olivine and pyroxene. Many nodules from the subcontinental mantle appear to be residues of large fractions of melting (>30%) at high temperature and pressure, whereas ultramafic nodules from oceanic basalts appear to be residues of smaller fractions of melting (<30%) at lower temperatures and pressures.  相似文献   
9.
Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50–700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven alvin heat flow measurements at 30°48.5′N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine arc calderas such as Sumisu and South Sumisu volcanoes.  相似文献   
10.
陕西省略阳县杨家坝多金属矿区成矿作用地球化学示踪   总被引:3,自引:1,他引:2  
本文以陕西省略阳县杨家坝多金属矿区为例,通过对该矿区岩(矿)石和各类脉体的岩相学、稀土和微量元素及流体包裹体地球化学示踪发现,多金属中重晶石的形成及硅化、碳酸盐化、滑石化、纤闪石化、绢云母化和绿泥石化和透闪石岩的含氟浅闪石及隐晶硅质玻璃和微晶硅质,这表明与成矿蚀变有关的热液流体是一种不同于一般地壳流体的富硅、钛、铁、碱质和挥发份,并具备熔体性质的成矿流体。各类样品的稀土元素配分模式明显富集LREE,在Ce、Eu、Yb异常的组合上也各具特征。LREE富集是地幔流体作用的显著特征之一;矿石和脉体的负Ce、正Eu和负Yb异常以及流体包裹体中H2O-C6H6成分,是高温还原地幔流体的重要标志;正Ce和负Eu异常的出现,以及Ce、Eu、Yb异常的减弱和消失则是壳幔混染叠加改造的显示。综合研究表明:矿区成矿过程可能统一受制于秦岭地区碰撞造山背景下具高温还原性质的地幔流体作用,且由此引发壳幔强烈混染的叠加改造作用在成矿过程中发挥了重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号