首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地球物理   4篇
地质学   10篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2003年   2篇
  1995年   1篇
  1991年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有14条查询结果,搜索用时 156 毫秒
1.
Borehole Breakouts in Berea Sandstone Reveal a New Fracture Mechanism   总被引:6,自引:0,他引:6  
— Vertical drilling experiments in high-porosity (22% and 25%) Berea sandstone subjected to critical true triaxial far-field stresses, in which σ H (maximum horizontal stress) >σ v (vertical stress) >σ h (least horizontal stress), revealed a new and non-dilatant failure mechanism that results in thin and very long tabular borehole breakouts that have the appearance of fractures, and which counterintuitively develop orthogonally to σ H . These breakouts are fundamentally different from those induced in crystalline rocks, as well as limestones and medium-porosity Berea sandstone. Breakouts in these rocks are typically dog-eared in shape, a result of dilatant multi-cracking tangential to the hole and subparallel to the maximum far-field horizontal stress σ H , followed by progressive buckling and shearing of detached rock flakes created by the cracks. In the high-porosity sandstone a narrow layer of grains compacted normal to σ H is observed just ahead of the breakout tip. This layer is nearly identical to “compaction bands” observed in the field. It is suggested that when a critical tangential stress concentration is reached along the σ h spring line at the borehole wall, grain bonding breaks down and a compaction band is formed normal to σ H . Debonded loose grains are expelled into the borehole, assisted by the circulating drilling fluid. As the breakout tip advances, the stress concentration ahead of it persists or may even increase, extending the compaction band, which in turn leads to breakout lengthening.  相似文献   
2.
Analytical uncertainties in oxygen isotopic studies of hydrous silica have been investigated using a partial fluorination procedure in which fractional oxygen yields are achieved by reducing the amount of fluorine. Stepwise reaction of opaline silica results in a set of sequential oxygen fractions which show a wide range of δ18O values due to variable amounts of water, organic matter, and other impurities, δ-values for successive fractions in non-biogenic opal systematically increase as water is reacted away and then remain constant to within ±0.2%. as the remaining silica reacts, δ-values in biogenic silica increase similarly but then decrease when low 18O oxide(?) impurities begin to react.The troublesome water component in opal is readily removed by Stepwise fluorination. This technique allows more precise oxygen isotope analysis of non-biogenic opal-A, and may improve the analytical precision for biogenic silica and any silicate mineral containing a significant water component.  相似文献   
3.
We conducted laboratory true triaxial experiments in the nearly impermeable Pohang rhyolite to investigate failure mechanisms under ‘dry’ and ‘wet’ rock conditions. Under ‘dry’ conditions prismatic specimens were jacketed all around to prevent confining fluid penetration. Under ‘wet’ conditions one pair of the specimen faces was left unjacketed and in direct contact with the confining fluid (kerosene) applying the least principal stress in an attempt to simulate the case of an unlined borehole wall. In both testing setups the true triaxial compressive strength for a given least principal stress increases significantly as the intermediate principal stress rises. The unjacketed rhyolite strength is, however, only 60 to 85% of the strength under dry conditions, depending on the magnitude of the intermediate principal stress. In dry rhyolite the failure process begins upon dilatancy onset, followed by microcrack localization, and ending in a steeply dipping shear fracture. On the other hand, brittle fracture in wet specimens occurs almost immediately after the onset of dilatancy by the development of one or more through-going extensile fractures subparallel and adjacent to one of the unjacketed faces, resembling the extensile cracks leading to borehole breakouts in crystalline rocks. We infer that upon dilatancy the confining fluid intrudes and quickly propagates newly opened stress-induced microcracks subparallel to the unjacketed faces, leading to ‘early’ failure.  相似文献   
4.
5.
Summary The determination of material parameters for rocks which display anisotropic behaviour has become more important in light of the development of powerful and economical analytical modeling techniques. The study presented herein is based on a testing framework aimed at determining the material parameters required to describe the behaviour of a transverse isotropic solid under axisymmetric loading conditions.Use of thin walled hollow cylindrical specimens instrumented with tangential strain gages on both the inner and outer surfaces allows one to completely define the average strains in the cylinder wall. Testing of a single specimen under axial and radial loading conditions is sufficient to determine the variation of the material elastic constants as a function of the applied stresses. Results are presented for two very different rock types, and illustrate the consistency of the developed methodology.On leave.  相似文献   
6.
Hydrofracturing stress measurements have been carried out to about 0.4 km in two boreholes in Quaternary volcanic rocks in Reykjavik, Iceland, on the flank of the Reykjanes-Langjökull continuation of the Mid-Atlantic Ridge. The measurements indicate a dominant orientation of H max approximately perpendicular to the axial rift zone, in contrast to earthquake focal mechanism solutions from within the axial rift zone of the Reykjanes Peninsula. In one hole (H32) a depth-dependent change in stress orientation is indicated, with 1 horizontal above a depth of about 0.25 km, and vertical below it; however the orientation of H max remains unchanged. The data thus suggest reconciliation of an apparent conflict between the dominantly compressive indications of shallow overcoring stress measurements and dominant extension as required by focal mechanism solutions. The measured stresses are supported by the more reliable of overcoring measurements from southeast Iceland, and by recent focal mechanism solutions for the intraplate Borgarfjördur area. A fundamental change in crustal stresses appears therefore to occur as a function of distance from the axis of the axial rift zone. The data seem reasonably explicable in terms of a combination of thermoelastic mechanisms associated with accretion and cooling of spreading lithosphere plates. Stresses directly associated with the driving mechanisms of plate tectonics apparently do not dominate the observed stress pattern.  相似文献   
7.
Stress-induced breakouts in vertical boreholes are failure zones caused by excessive compressive stress concentration at the borehole wall along the springline of the least horizontal far-field stress. Wellbores are sometimes drilled into aquifers or oil reservoirs that are weak, poorly consolidated, and highly porous sandstone formations, which are often conducive to breakout formation. Breakouts are an expression of borehole instability and a potential source of sand production. On the other hand, the breakout phenomenon can be used advantageously in obtaining an estimate of the in situ stress condition. The average orientation of breakouts, as identified by borehole geophysical logging, is a reliable indicator of in situ stress directions. It has also been suggested that breakout dimensions could potentially be used as indicators of in situ stress magnitudes. The research reported here has concentrated on the unique type of breakouts observed for the first time in high-porosity Berea sandstone. Drilling experiments in rock blocks subjected to critical far-field true triaxial stress regimes, simulating in situ conditions, induced breakouts that were unlike the ‘dog-ear’ ones previously observed in granites, limestones, and low-porosity sandstones. The newly observed breakouts were thin, tabular, and very long, resembling fractures that counterintuitively extended perpendicular to the maximum principal stress. We found that a narrow zone ahead of a fracture-like breakout tip underwent apparent localized grain debonding and compaction. In the field, such zones have been termed ‘compaction bands’, and are a source of concern because in oil fields and aquifers they constitute curtains of low permeability that can impede the normal flow of oil or water. In order to determine whether a correlation exists between fracture-like breakouts and in situ stress, we conducted several series of tests in which the minimum horizontal and vertical stresses were held constant and the maximum horizontal stress (σH) was increased from test to test. These tests showed strong dependence of the breakout length on far-field stress, signaling that potentially the ability to assess fracture-like breakout length in the field could be used to estimate in situ stress magnitudes in conjunction with other indicators. Another series of tests revealed that breakout length increased substantially when borehole diameter was enlarged. This result suggested that in the field, where wellbore size is considerably larger, fracture-like breakout could extend to sizable distances, creating a sand production hazard. Two series of tests, one to evaluate the effect of drill-bit penetration rate, and the other to verify the drilling-fluid flow rate effect on breakout formation and dimensions yielded inconsistent results and showed no unique trends. Remarkably, fracture-like breakouts maintained a consistent narrow width of about 5–10 grain diameters, irrespective of the test conditions. This characteristic supports the suggestion that fracture-like breakouts are emptied compaction bands.  相似文献   
8.
9.
Compaction bands induced by borehole drilling   总被引:1,自引:1,他引:0  
Drilling experiments in rock blocks subjected to pre-existing true triaxial far-field stresses simulating real in situ conditions often result in localized failure around the created borehole, which brings about the formation of borehole breakouts. In weakly bonded quartz-rich porous sandstones breakouts take the form of narrow tabular (slot-like) openings extending along a plane perpendicular to the maximum applied-stress direction. Scanning electron microscopes images of failed boreholes strongly suggest that these breakouts are compaction bands that have been emptied to different extents. The bands form as a result of the stress concentration accompanying the creation of the borehole. The evacuation of the compaction bands is brought about by the circulating drilling fluid flushing out debonded and often fragmented grains from within these bands (Haimson and co-workers, 2003–2007). The objective of this paper is to predict the conditions under which compaction bands are formed around boreholes. To this end, a new analytical model is formulated that enables prediction of the stress field around emptied and filled compaction bands, the various factors affecting the breakouts lengths, and their final length. Good agreement of the developed analytical model with experimental results obtained by Haimson and co-workers (Haimson and Klaetsch in Rock physics and geomechanics in the study of reservoirs and repositories, vol 284, pp 89–105, 2007; Haimson and Kovachich in Eng Geol 69:219–231, 2003; Klaetsch and Haimson in Mining and tunneling innovation and opportunity, University of Toronto press, pp 1365–1371, 2002; Sheets and Haimson in Proceedings, paper ARMA/NARMS 04-484, 2004) is demonstrated. The presented study is of practical relevance: boreholes are often drilled deep into weak porous sandstone formations for the purpose of extracting oil and gas, and the question of borehole stability is crucial. In addition, borehole breakouts are often used to estimate the state of stress in the Earth’s crust, and our new formulation will help improve these estimates.  相似文献   
10.
Constitutive equations for the mechanical and hydraulic behaviour of saturated porous rock with joint sets of specified orientations are developed by superposing continuum representations for the mechanical and hydraulic properties of the intact rock and each of the joint sets. The resulting continuum theory allows for fluid diffusion through and between interconnected rock pores and joint sets of specified orientation, and also accounts for the anisotropy of the mechanical properties due to joint stiffnesses. The accuracy and reliability of this model are verified by finite element simulation of example problems. The first example considers joint orientation-dependent rock deformation in a hypothetical porous medium with one joint set of different dip angles. More realistic examples related to rock slope stability and reservoir-induced seismicity are also considered in which the constitutive law's utility for modelling time-dependent fluid pressures is illustrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号