首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
地球物理   8篇
地质学   7篇
  2020年   1篇
  2018年   3篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
ABSTRACT

Predicting the impacts of climate change on water resources remains a challenging task and requires a good understanding of the dynamics of the forcing terms in the past. In this study, the variability of precipitation and drought patterns is studied over the Mediterranean catchment of the Medjerda in Tunisia based on an observed rainfall dataset collected at 41 raingauges during the period 1973–2012. The standardized precipitation index and the aridity index were used to characterize drought variability. Multivariate and geostatistical techniques were further employed to identify the spatial variability of annual rainfall. The results show that the Medjerda is marked by a significant spatio-temporal variability of drought, with varying extreme wet and dry events. Four regions with distinct rainfall regimes are identified by utilizing the K-means cluster analysis. A principal component analysis identifies the variables that are responsible for the relationships between precipitation and drought variability.  相似文献   
2.
A destructive earthquake of magnitude Mw = 6.8 hit the region of Boumerdes and Algiers (Algeria) on May 21, 2003. This is among the strongest seismic events of the mediterranean region and the most important event in the capital Algiers since 1716. It caused a widespread damage in the epicentral region, claimed 2271 human lives, injured 10000, about 20000 housing units affected and left about 160000 homeless. The main shock was felt about 250 km far from the epicenter and triggered sea waves of 1–3 m in amplitude in Balearic islands (Spain). Based on field observations and press report an intensity IX (MSK scale) is attributed to the epicentral area. The main shock was followed by many aftershocks among them several are of magnitude greater than 5.0, which added panic to inhabitants. The main shock triggered ground deformation, particularly liquefaction whose features are in different forms and sizes and caused damage and collapse of roads. The focal mechanism determined by worldwide institutions yield a pure reverse faulting with a compressional axis striking NE-SW. The epicenter is located offshore about 7 km from the Boumerdes-Dellys coast. Field observations show 0.7 m of coseismic uplift of shoreline between Boudouaou and Dellys. This uplift is about a half of the extracted coseismic slip from the seismic moment. On the other hand there is no clear surface break onshore, confirming hence, that the causative active fault is offshore. However, the rupture may propagate onshore to the SE near the Boudouaou region where ground cracks showing reverse faulting are observed a long a corridor of about 1 km wide. These fissures may correspond to a diffuse coseismic deformation.  相似文献   
3.
4.
Understanding the hydrological response of small and large river basins is crucial for regional climate and hydrology studies. Also, rainfall space–time variability (Known in semi arid climate) has a major influence on hydrological dynamics. As consequent, we developed a software application (with MATLAB) in order to take into account the rainfall space-time variability, and that open a major prospects of studying hydrometeorological effects such scale effect and moving storms. In this context, in order to asses scale and dynamic rainy events effect in hydrologic modelling, this study focuses on instantaneous rainy data in central Tunisia (Merguellil and Skhira watershed): a rainfall runoff modelling was done to investigate basins responses and a developed geomorphology-based transfer function, was applied. A systematic hydro-meteorological analysis have been implemented to understand different types of variability and rainy fields dynamic, the relevance of rainfall network and scale effects. As result, two different behaviours of studied basins are detected. Responses of studied areas are much related to event dynamic (East/West and West/East) and hydrographs change according to event direction.  相似文献   
5.
In semi-arid regions, variability of rainfall inputs is high at different time and space scales. Thus, intense and highly variable hydro-meteorological events, which generate both potential resource and hazards, are of major interest. The Merguellil watershed is characterized by a large majority of rainfall in the form of storms, particularly violent in spring and autumn. Storms of summer are short and violent and can be the origin of important floods. Due to the strong rainfall variability, precipitation and hydrological regime are very irregular. This is what led us to think of a detailed study of rainy events. It was founded that two statistical distributions of parameters characterizing events are dominated (log normal, exponential).Thus, our objective consists in studying, in its globality, the collected pluviographic data in order to make a synthesis and analysis which should make it possible the generation of fictitious events to better control the rainfall risk and to study the response of the watershed faces to several types of rainfall. As result, we obtained hyetographs of the height studied rain gauges. These hyetographs show several types of events that are well in conformity with the observed reality. This generation is an advantageous tool in terms of both its robustness and its performance. Its relevance is based on the analysis of the fine time structure of recorded rainfall events. It can be made over several years, and would permit us to avoid being constrained by sample size. Generating rainfall events provides extensive time-related rainfall data that are consistent at all time steps, and can be seen as solution, even partially, of data lack in hydrological study.  相似文献   
6.
The assessment of net rainfall, defined as the intermediate hydrological variable linked in between the hillslope and the river network, is a challenge. This paper presents a method for net rainfall estimation, using inverse modelling associated to a geomorphology-based transfer function. The analysis is carried out in semi-arid Tunisia, with a dataset from event discharges in a mesoscale dryland basin. A complete sensitivity analysis is developed, along with a discussion of validity limits for simplifying assumptions and the identification of paths for improvement. This work could be relevant for data-scarce areas, thanks to the use of simple dynamic conceptualization and being based on observable geomorphological features, adjusted to the available data and knowledge.  相似文献   
7.
Rainfall variability is an important feature of semiarid climates with major effects on hydrology, and beyond on key water-dependent societal aspects. Eventual changes in rainfall variability are a strong driver of change of hydrological processes, resources, and hazards, up to catchment signatures and spatial arrangements. We deal with observed precipitations and subsequent statistical coefficients available from a network of 15 rainfall gauges over and around the Merguellil catchment (1175 km2), with series ranging up to the 1961–2013 period. We look for eventual annual trends and breakpoints with a set of methods: Mann Kendall test, Pettitt test, Hubert segmentation procedure, Buishand U statistic, and Lee Heghinian Bayesian procedure. The results underline oscillation of dry and wet periods; several studied rain gauges (Tella, Oueslatia forêt, Majbar, Kesra forêt, Henchir Bhima, and Haffouz DGRE) denote significant trends in annual precipitation. Some breaks are detected but they are not synchronous. These methods reveal the variability of rainfall regimes in the semiarid region and provide a synoptic view of detection and no-detection of symptoms of change. This work gives opportunities to water stakeholders and climate experts in understanding the relationships between climate variability and water availability.  相似文献   
8.
Abstract

This paper compares the performance of three geostatistical algorithms, which integrate elevation as an auxiliary variable: kriging with external drift (KED); kriging combined with regression, called regression kriging (RK) or kriging after detrending; and co-kriging (CK). These three methods differ by the way by in which the secondary information is introduced into the prediction procedure. They are applied to improve the prediction of the monthly average rainfall observations measured at 106 climatic stations in Tunisia over an area of 164 150 km2 using the elevation as the auxiliary variable. The experimental sample semivariograms, residual semivariograms and cross-variograms are constructed and fitted to estimate the rainfall levels and the estimation variance at the nodes of a square grid of 20 km?×?20 km resolution and to develop corresponding contour maps. Contour diagrams for KED and RK were similar and exhibited a pattern corresponding more closely to local topographic features when (a) the network is sparse and (b) the rainfall–elevation correlation is poor, while CK showed a smooth zonal pattern. Smaller prediction variances are obtained for the RK algorithm. The cross-validation showed that the RMSE obtained for CK gave better results than for KED or RK.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Feki, H., Slimani, M., and Cudennec, C., 2012. Incorporating elevation in rainfall interpolation in Tunisia using geostatistical methods. Hydrological Sciences Journal, 57 (7), 1294–1314.  相似文献   
9.
10.
A moderate Mw 4.9 earthquake struck the Beni Haoua (Algeria) coastal area on April 25, 2012. The mainshock was largely recorded by the accelerograph network of the Centre National de Recherche Appliquée en Génie Parasismique (CGS). The same day the earthquake occurred, eight mobile short period stations were deployed through the epicentral area. In this study, we use accelerogram and seismogram data recorded by these two networks. We combined the focal mechanism built from the first motion of P waves and from waveform inversion, and the distribution of aftershocks to well constrain the source parameters. The mainshock is located with a shallow focal depth, ~9 km, and the focal mechanism shows a nearly pure left lateral strike slip motion, with total seismic moment of 2.8?×?1016 N.m (Mw?=?4.9). The aftershocks mainly cluster on a narrow NS strip, starting at the coast up to 3–4 km inland. This cluster, almost vertical, is concentrated between 6 and 10 km depth. The second part of this work concerns the damage distribution and estimated intensity in the epicentral area. The damage distribution is discussed in connection with the observed maximum strong motion. The acceleration response spectrum with 5 % damping of the mainshock and aftershocks give the maximum amplitude in high frequency which directly affects the performance of the high-frequency structures. Finally, we tie this earthquake with the seismotectonic of the region, leading to conclude that it occurred on a N–S transform zone between two major compressional fault zones oriented NE–SW.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号