首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
大气科学   1篇
地球物理   7篇
地质学   6篇
海洋学   6篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有20条查询结果,搜索用时 234 毫秒
1.
2.
The complexity of the laws of dynamics governing 3-D atmospheric flows associated with incomplete and noisy observations make the recovery of atmospheric dynamics from satellite image sequences very difficult. In this paper, we address the challenging problem of estimating physical sound and time-consistent horizontal motion fields at various atmospheric depths for a whole image sequence. Based on a vertical decomposition of the atmosphere, we propose a dynamically consistent atmospheric motion estimator relying on a multilayer dynamic model. This estimator is based on a weak constraint variational data assimilation scheme and is applied on noisy and incomplete pressure difference observations derived from satellite images. The dynamic model is a simplified vorticity-divergence form of a multilayer shallow-water model. Average horizontal motion fields are estimated for each layer. The performance of the proposed technique is assessed using synthetic examples and using real world meteorological satellite image sequences. In particular, it is shown that the estimator enables exploiting fine spatio-temporal image structures and succeeds in characterizing motion at small spatial scales.  相似文献   
3.
Depositional environments along the tidal river downstream of Óbidos have been proposed as important sinks for up to one third of the sediment discharge from the Amazon River. However, the morphology of the intertidal floodplain and the dynamics of sediment exchange along this reach have yet to be described. River-bank surveys in five regions along the Amazon tidal river reveal a distinct transition in bank morphology between the upper, central and lower reaches of the tidal river. The upper tidal-river floodplain is defined by prominent natural levees that control the transfer of water and sediment between the mainstem Amazon River and its floodplain. Greater tidal influence in the central tidal river suppresses levee development, and tidal currents increase sediment transport into the distal parts of the floodplain. In the lower tidal river, the floodplain morphology closely resembles marine intertidal environments (e.g. mud flats, salt marshes), with dendritic tidal channels incising elevated vegetated flats. Theory, morphology and geochronology suggest that the dynamics of sediment delivery to the intertidal floodplain of the Amazon tidal river vary along its length due to the relative influence and coupling of fluvial and tidal dynamics. © 2018 John Wiley & Sons, Ltd.  相似文献   
4.
Sediment resuspension during and after mechanical excavation of macrophytes may have a significant impact on resident fish populations. Unfortunately, little is known about the influence of this sediment on the respiratory performance and feeding abilities of fishes in New Zealand waterways. We examined the effects of suspended sediment (SS) concentrations previously observed after a large-scale macrophyte removal operation on oxygen consumption (MO2) and feeding rates of brown trout (Salmo trutta). MO2 at 0 mg L?1, 150 mg L?1, 300 mg L?1, 450 mg L?1 and 600 mg L?1 of SS was measured using semi-closed respirometry. Feeding rates at the same SS concentrations were also measured using laboratory tank experiments. Results suggest that SS concentrations up to 600 mg L?1 have no effect on MO2. Conversely, feeding rates were significantly reduced at 450 mg L?1 (22% reduction) and 600 mg L?1 (31% reduction), indicating that sediment concentrations above 450 mg L?1 may negatively affect brown trout populations.  相似文献   
5.
6.
7.

Coral reef ecosystems worldwide are now being harmed by various stresses accompanying the degradation of fish habitats and thus knowledge of fish-habitat relationships is urgently required. Because conventional research methods were not practical for this purpose due to the lack of a geospatial perspective, we attempted to develop a research method integrating visual fish observation with a seabed habitat map and to expand knowledge to a two-dimensional scale. WorldView-2 satellite imagery of Spermonde Archipelago, Indonesia obtained in September 2012 was analyzed and classified into four typical substrates: live coral, dead coral, seagrass and sand. Overall classification accuracy of this map was 81.3% and considered precise enough for subsequent analyses. Three sub-areas (CC: continuous coral reef, BC: boundary of coral reef and FC: few live coral zone) around reef slopes were extracted from the map. Visual transect surveys for several fish species were conducted within each sub-area in June 2013. As a result, Mean density (Ind. / 300 m2) of Chaetodon octofasciatus, known as an obligate feeder of corals, was significantly higher at BC than at the others (p < 0.05), implying that this species’ density is strongly influenced by spatial configuration of its habitat, like the “edge effect.” This indicates that future conservation procedures for coral reef fishes should consider not only coral cover but also its spatial configuration. The present study also indicates that the introduction of a geospatial perspective derived from remote sensing has great potential to progress conventional ecological studies on coral reef fishes.

  相似文献   
8.
Clinoform mechanics in the Gulf of Papua, New Guinea   总被引:1,自引:0,他引:1  
The largest islands of the Indo-Pacific Archipelago are estimated to account for 20–25% of the global sediment discharge to the ocean, and much (>50%) of this sediment is supplied to wide (>150 km) continental shelves. These conditions are conducive to creation of large-scale morphologic features known as clinoforms—sigmoidal-shaped deposits on the continental shelf. The Gulf of Papua (GOP) receives 3.84 ×108 tons of sediment annually from three principal sediment suppliers, the Fly, Kikori and Purari Rivers, and its prograding clinoform is the focus of this study. During three research cruises, 80 cores and 37 CTD/optical backscatter casts were collected, and an instrumented tripod was deployed twice. Sedimentological and radiochemical results indicate that the GOP clinoform has characteristics similar to those seaward of other major rivers (e.g., Amazon, Ganges–Brahmaputra), specifically sand/mud interbedding on the topset, rapidly accumulating muds on the foreset, and siliciclastic mud mixed with carbonate sand on the bottomset.Using core data and field observations, the mechanics of clinoform progradation are examined. Discrete, large sedimentation events are identified as processes building the clinoform feature. X-radiographs from foreset cores reveal thick beds (>5 cm) between bioturbated sections. Detailed 210Pb and grain-size data indicate that low activities and increased clay contents are associated with these beds. They are hypothesized to be formed by fluid–mud deposition in response to periods of large wave-tide bed shear stresses, more likely during the SE-tradewind season, and their regular occurrence produces high rates of mean accumulation (4 cm/y). Bed preservation is determined by the rates of sediment accumulation and bioturbation.To assess the influence of physical oceanographic factors on clinoform shape, bottom shear stresses from tides and surface waves were calculated using available wave and tripod data. This effort reveals that the depth range (25–40 m) of the clinoform rollover point (seaward edge of the topset region) is roughly consistent with the sediment-transport regime. Furthermore, calculations corroborate the core data that suggest possible seasonal sediment storage in the inner topset region (<15-m water depth, during the NW-monsoon winds) with subsequent transfer to foreset beds (more probable during SE-tradewind conditions).A 100-yr sediment budget created with accumulation rate data suggests approximately 20% of the total sediment supplied to the GOP accumulates on the clinoform (creating the clinoform morphology). Less than 5% is believed to escape to the adjacent slope, and much of the remaining 75% is likely trapped on the inner-topset region (<20 m water depth) and within the mangrove forests and flood/delta plains of the northern GOP.  相似文献   
9.
The ecological significance of algal and seagrass wrack subsidies has been well-documented for exposed-coast sandy beaches but is relatively unstudied in lower-energy and mixed-sediment beaches. In marine nearshore environments where beaches are fringed with riparian vegetation, the potential for reciprocal subsidies between marine and terrestrial ecosystems exists. Within the marine-terrestrial ecotone, upper intertidal “wrack zones” accumulate organic debris from algae, seagrass, and terrestrial plant sources and provide food and shelter for many organisms. Human modification also occurs within this ecotone, particularly in the form of armoring structures for bank stabilization that physically disrupt the connectivity between ecosystems. We conducted detailed wrack and log surveys in spring and fall over 3 years at 29 armored–unarmored beach pairs in Puget Sound, WA, USA. Armoring lowered the elevation of the interface between marine and terrestrial ecosystems and narrowed the width of the intertidal transition zone. Armored beaches had substantially less wrack overall and a lower proportion of terrestrial plant material, while marine riparian zones (especially trees overhanging the beach) were an important source of wrack to unarmored beaches. Armored beaches also had far fewer logs in this transition zone. Thus, they lacked biogenic habitat provided by logs and riparian wrack as well as the organic input used by wrack consumers. Results such as these that demonstrate armoring-associated loss of connectivity across the marine-terrestrial ecotone may be useful in informing conservation, restoration, and management actions.  相似文献   
10.
Multiple canyons incise the continental slope at the seaward edge of the continental shelf in the Gulf of Lions and are actively involved in the transfer of sediment from shelf to deep sea. Two canyons in the southwest region of the Gulf of Lions, Lacaze-Duthiers Canyon and Cap de Creus Canyon, were instrumented with bottom-boundary-layer tripods in their heads to evaluate the processes involved in sediment delivery, resuspension and transport. In both canyons, intense cold, dense-water flows carry sediment across the slope. In the Lacaze-Duthiers canyon head (located ∼35 km from the shoreline), dense-water cascading into the canyon was episodic. Currents were highly variable in the canyon head, and responded to interactions between the along-slope Northern Current and the sharp walls of the canyon. Inertial and other high-frequency fluctuations were associated with suspended-sediment concentrations of ∼5 mg/l. In Cap de Creus canyon head (located ∼14 km from the shoreline), downslope currents were higher in magnitude and more persistent than in Lacaze-Duthiers canyon head. Greater suspended-sediment concentrations (peaks up to 20 mg/l) were observed in Cap de Creus Canyon due to resuspension of the canyon seabed during dense-water cascading events. The similarities and contrasts between processes in these two canyon heads emphasize the importance of the interaction of currents with sharp canyon bathymetry. The data also suggest that cold, dense-water flows have more potential to carry sediment to the slope on narrow shelves, and may more efficiently transfer that sediment to the deep sea where a smooth transition between shelf and slope exists.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号