首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67537篇
  免费   1217篇
  国内免费   701篇
测绘学   1975篇
大气科学   5389篇
地球物理   13933篇
地质学   23103篇
海洋学   5653篇
天文学   15435篇
综合类   181篇
自然地理   3786篇
  2021年   455篇
  2020年   511篇
  2019年   617篇
  2018年   1400篇
  2017年   1303篇
  2016年   1764篇
  2015年   1014篇
  2014年   1676篇
  2013年   3200篇
  2012年   1817篇
  2011年   2443篇
  2010年   2202篇
  2009年   3002篇
  2008年   2636篇
  2007年   2535篇
  2006年   2503篇
  2005年   1951篇
  2004年   1983篇
  2003年   1872篇
  2002年   1908篇
  2001年   1682篇
  2000年   1663篇
  1999年   1440篇
  1998年   1386篇
  1997年   1406篇
  1996年   1182篇
  1995年   1125篇
  1994年   1035篇
  1993年   903篇
  1992年   836篇
  1991年   848篇
  1990年   836篇
  1989年   823篇
  1988年   763篇
  1987年   908篇
  1986年   846篇
  1985年   934篇
  1984年   1141篇
  1983年   1063篇
  1982年   1009篇
  1981年   944篇
  1980年   824篇
  1979年   818篇
  1978年   846篇
  1977年   736篇
  1976年   666篇
  1975年   666篇
  1974年   694篇
  1973年   713篇
  1972年   475篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
1.
2.
3.
Urban development significantly alters the landscape by introducing widespread impervious surfaces, which quickly convey surface run‐off to streams via stormwater sewer networks, resulting in “flashy” hydrological responses. Here, we present the inadequacies of using raster‐based digital elevation models and flow‐direction algorithms to delineate large and highly urbanized watersheds and propose an alternative approach that accounts for the influence of anthropogenically modified land cover. We use a semi‐automated approach that incorporates conventional drainage networks into overland flow paths and define the maximal run‐off contributing area. In this approach, stormwater pipes are clustered according to their slope attributes, which define flow direction. Land areas drained by each cluster and contributing (or exporting) flow to a topographically delineated catchment were determined. These land masses were subsequently added or removed from the catchment, modifying both the shape and the size. Our results in a highly urbanized Toronto, Canada, area watershed indicate a moderate net increase in the directly connected watershed area by 3% relative to a topographically forced method; however, differences across three smaller scale subcatchments are greater. Compared to topographic delineation, the directly connected watershed areas of both the upper and middle subcatchments decrease by 5% and 8%, respectively, whereas the lower subcatchment area increases by 15%. This is directly related to subsurface storm sewer pipes that cross topographic boundaries. When directly connected subcatchment area is plotted against total streamflow and flashiness indices using this method, the coefficients of variation are greater (0.93 to 0.97) compared to the use of digital elevation model‐derived subcatchment areas (0.78 to 0.85). The accurate identification of watershed and subcatchment boundaries should incorporate ancillary data such as stormwater sewer networks and retention basin drainage areas to reduce water budget errors in urban systems.  相似文献   
4.
Studying seismic wave propagation across rock masses and the induced ground motion is an important topic, which receives considerable attention in design and construction of underground cavern/tunnel constructions and mining activities. The current study investigates wave propagation across a rock mass with one fault and the induced ground motion using a recursive approach. The rocks beside the fault are assumed as viscoelastic media with seismic quality factors, Qp and Qs. Two kinds of interactions between stress waves and a discontinuity and between stress waves and a free surface are analyzed, respectively. As the result of the wave superposition, the mathematical expressions for induced ground vibration are deduced. The proposed approach is then compared with the existing analysis for special cases. Finally, parametric studies are carried out, which includes the influences of fault stiffness, incident angle, and frequency of incident waves on the peak particle velocities of the ground motions.  相似文献   
5.
The impact of turbulent flow on plane strain fluid‐driven crack propagation is an important but still poorly understood consideration in hydraulic fracture modeling. The changes that hydraulic fracturing has experienced over the past decade, especially in the area of fracturing fluids, have played a major role in the transition of the typical fluid regime from laminar to turbulent flow. Motivated by the increasing preponderance of high‐rate, water‐driven hydraulic fractures with high Reynolds number, we present a semianalytical solution for the propagation of a plane strain hydraulic fracture driven by a turbulent fluid in an impermeable formation. The formulation uses a power law relationship between the Darcy‐Weisbach friction factor and the scale of the fracture roughness, where one specific manifestation of this generalized friction factor is the classical Gauckler‐Manning‐Strickler approximation for turbulent flow in a rough‐walled channel. Conservation of mass, elasticity, and crack propagation are also solved simultaneously. We obtain a semianalytical solution using an orthogonal polynomial series. An approximate closed‐form solution is enabled by a choice of orthogonal polynomials embedding the near‐tip asymptotic behavior and thus giving very rapid convergence; a precise solution is obtained with 2 terms of the series. By comparison with numerical simulations, we show that the transition region between the laminar and turbulent regimes can be relatively small so that full solutions can often be well approximated by either a fully laminar or fully turbulent solution.  相似文献   
6.
In the atmospheric Čerenkov technique γ-rays are detected against the abundant background produced by hadronic showers. In order to improve the signal to noise ratio of theexperiment, it is necessary to reject a significant fraction of hadronic showers. Traditional background rejection methods based on image shape parameters have been extensively used for the data from imaging telescopes. However, non-imaging Čerenkov telescopes have to develop very different means of statistically identifying and removing cosmic ray events. Some of the parameters, which could be potentially important for non-imaging arrays, are the temporal and spectral differences, the lateral distributions and density fluctuations of Čerenkov photons generated by γ-ray and hadron primaries. Here we study the differences in fluctuations of Čerenkov photon density in the light pool at the observation level from showers initiated by photons and those initiated by protons or heavier nuclei. The database of simulated events for the PACT array has been used to evaluate the efficiency of the new technique. Various types of density fluctuations like the short range and medium range fluctuations as well as flatness parameter are studied. The estimated quality factors reflect the efficiencies with which the hadrons can be rejected from the data. Since some of these parameters are independent, the cuts may be applied in tandem and we demonstrate that the proton rejection efficiency of ∼90% can be achieved. Use of density fluctuations is particularly suited for wavefront sampling observations and it seems to be a good technique to improve the signal to noise ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
Abstract— The Vredefort Granophyre represents impact melt that was injected downward into fractures in the floor of the Vredefort impact structure, South Africa. This unit contains inclusions of country rock that were derived from different locations within the impact structure and are predominantly composed of quartzite, feldspathic quartzite, arkose, and granitic material with minor proportions of shale and epidiorite. Two of the least recrystallized inclusions contain quartz with single or multiple sets of planar deformation features. Quartz grains in other inclusions display a vermicular texture, which is reminiscent of checkerboard feldspar. Feldspars range from large, twinned crystals in some inclusions to fine‐grained aggregates that apparently are the product of decomposition of larger primary crystals. In rare inclusions, a mafic mineral, probably biotite or amphibole, has been transformed to very fine‐grained aggregates of secondary phases that include small euhedral crystals of Fe‐rich spinel. These data indicate that inclusions within the Vredefort Granophyre were exposed to shock pressures ranging from <5 to 8–30 GPa. Many of these inclusions contain small, rounded melt pockets composed of a groundmass of devitrified or metamorphosed glass containing microlites of a variety of minerals, including K‐feldspar, quartz, augite, low‐Ca pyroxene, and magnetite. The composition of this devitrified glass varies from inclusion to inclusion, but is generally consistent with a mixture of quartz and feldspar with minor proportions of mafic minerals. In the case of granitoid inclusions, melt pockets commonly occur at the boundaries between feldspar and quartz grains. In metasedimentary inclusions, some of these melt pockets contain remnants of partially melted feldspar grains. These melt pockets may have formed by eutectic melting caused by inclusion of these fragments in the hot (650 to 1610 °C) impact melt that crystallized to form the Vredefort Granophyre.  相似文献   
8.
9.
A spectacular change in the lower corona on the south-west limb has been found in solar images taken by the Yohkoh soft X-ray telescope. The event is characterized by a large topological change in magnetic field and a large intensity decrease observed after the X1. 1/1B flare on 9 November, 1991. A coronal mass ejection (CME) was observed by the Mark III K-coronameter (MK3) at the HAO/Mauna Loa Observatory. Both the MK3 (white-light) and soft X-ray observations showed that one leg of this CME was located above the flare site. An interplanetary shock associated with this event was observed by Pioneer Venus Orbiter, and, possibly, by IMP-8.Also Cooperative Institute for Research in the Environmental Sciences (CIRES), University of Colorado, Boulder, CO 80309, U.S.A.  相似文献   
10.
What the Sunspot Record Tells Us About Space Climate   总被引:1,自引:0,他引:1  
The records concerning the number, sizes, and positions of sunspots provide a direct means of characterizing solar activity over nearly 400 years. Sunspot numbers are strongly correlated with modern measures of solar activity including: 10.7-cm radio flux, total irradiance, X-ray flares, sunspot area, the baseline level of geomagnetic activity, and the flux of galactic cosmic rays. The Group Sunspot Number provides information on 27 sunspot cycles, far more than any of the modern measures of solar activity, and enough to provide important details about long-term variations in solar activity or “Space Climate.” The sunspot record shows: 1) sunspot cycles have periods of 131± 14 months with a normal distribution; 2) sunspot cycles are asymmetric with a fast rise and slow decline; 3) the rise time from minimum to maximum decreases with cycle amplitude; 4) large amplitude cycles are preceded by short period cycles; 5) large amplitude cycles are preceded by high minima; 6) although the two hemispheres remain linked in phase, there are significant asymmetries in the activity in each hemisphere; 7) the rate at which the active latitudes drift toward the equator is anti-correlated with the cycle period; 8) the rate at which the active latitudes drift toward the equator is positively correlated with the amplitude of the cycle after the next; 9) there has been a significant secular increase in the amplitudes of the sunspot cycles since the end of the Maunder Minimum (1715); and 10) there is weak evidence for a quasi-periodic variation in the sunspot cycle amplitudes with a period of about 90 years. These characteristics indicate that the next solar cycle should have a maximum smoothed sunspot number of about 145 ± 30 in 2010 while the following cycle should have a maximum of about 70 ± 30 in 2023.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号