首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
大气科学   7篇
地球物理   1篇
地质学   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Murugavel  P.  Malap  N.  Balaji  B.  Mehajan  R. K.  Prabha  T. V. 《Theoretical and Applied Climatology》2017,130(1-2):467-476

Based on the precipitable water observations easily available from in situ and remote sensing sensors, a simple approach to define the lifting condensation level (LCL) is proposed in this study. High-resolution radiosonde and microwave radiometer observations over peninsular Indian region during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment Integrated Ground Observational Campaign (CAIPEEX-IGOC) during the monsoon season of 2011 are used to illustrate the unique relationship. The inferences illustrate a linear relationship between the precipitable water (PW) and the LCL temperature. This relationship is especially valuable because PW is easily available as a derived parameter from various remote sensing and ground-based observations. Thus, it could be used to estimate the LCL height and perhaps also the boundary layer height. LCL height and PW correlations are established from historical radiosonde data (1984–2012). This finding could be used to illustrate the boundary layer-cloud interactions during the monsoon and is important for parameterization of boundary layer clouds in numerical models. The relationships are illustrated to be robust and seem promising to get reasonable estimates of the LCL height over other locations as well using satellite observations of PW.

  相似文献   
2.
In spite of many experimental and theoretical studies the relationships between storm dynamics, severe weather, and lightning activity have been least understood. Measurements of electric field made under a severe thunderstorm at a northeastern Indian station, Guwahati, India are reported. Lightning flash rate increases drastically to about 84 flashes per minute (fpm) during the active stage which lasted for about 7 minutes, from about 15 flashes per minute during the initial phase of thunderstorm. Sudden increase in lightning flash rate (‘lightning jump’) of about 65 fpm/min is also observed in the beginning of the active stage. The dissipating stage is marked by slow and steady decrease in lightning frequency. Despite very high flash rate during the active stage, no severe weather conditions are observed at the ground. It is proposed that the short duration of the active stage might be the reason for the non-observance of severe weather conditions at the ground. Analysis of Skew-t graph at Guwahati suggests that vertical distribution of Convective Available Potential Energy (CAPE) also may play some role in non-occurrence of severe weather at ground in spite of large lightning flash rate and lightning jump observed in this thunderstorm. Further, all electric field changes after a lightning discharge indicates the presence of strong Lower Positive Charge Centers (LPCC) in the active and dissipation stages. This suggests that LPCC plays an important role in initiation of lightning discharges in these stages.  相似文献   
3.
The effects of molecular diffusivity of H2SO4 and NH3 vapours on nucleated particles of SO42− and NO3 species are reported. Condensation sink and source rate of H2SO4 and NH3 vapours, growth rates and ratios of real to apparent nucleation rates are calculated for SO4 and NO3 aerosols using fractional contributions of them in total aerosol size-distribution during the measurement period at Pune, reported in Chate and Pranesha (2004). The percentage of nucleated SO42− and NO3 aerosols of mid-point diameter 13 nm are 2% and 3% respectively of the total particles (13 nm ≤ D p ≤ 750 nm) for both H2SO4 and NH3 diffusion. In the diameter range 75 nm ≤ D p ≤ 133 nm, it is 48% and 45% of SO42− and NO3 aerosols, respectively for NH3 diffusion and 43% and 36% of SO42− and NO3 for H2SO4 diffusion. Increase in percentage of nucleated particles of these species corresponding to mid-point diameter 133 nm around 0900 h IST is significantly higher than that of mid-point diameter 13 nm and it is due to photo-chemical nucleation, coagulation and coalescence among nucleated clusters. The ratios of real to apparent formation rates for SO42− and NO3 aerosols are 12% and 11% respectively, corresponding to mid-point diameter 13 nm, 17% and 13%, for midpoint diameter 133 nm and 12% and 9.5%, for mid-point diameter 750 nm. The results indicate that nucleation involving H2SO4 and acidic NH3 diffusion on SO42− and NO3 particles is the most relevant mechanism in this region.  相似文献   
4.
The three-dimensional nonstationary model of a convective cloud is used for investigating a thunderstorm with hail which developed over Pyatigorsk on May 29, 2012 and produced a severe hailstorm. The values of cloud characteristics (liquid water content, ice content, vertical velocity, etc.) are obtained. The importance ofconsidering wind shear is noted. The simulation results are used to analyze the transformation of precipitation field and the electric charge structure of the analyzed cloud during its development.  相似文献   
5.
Airborne measurements of the number concentration and size distribution of aerosols from 13 to 700 nm diameter have been made at four vertical levels across a coastline at Bhubaneswar (20°25′N, 85°83′E) during the Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB) programme conducted in March–April 2006. The measurements made during the constant-level flights at 0.5, 1, 2 and 3 km altitude levels extend ~100 km over land and ~150km over ocean. Aerosol number concentrations vary from 2200 to 4500 cm?3 at 0.5 km level but are almost constant at ~ 6000 cm?3 and ~ 800 cm?3 at 2 and 3 km levels, respectively. At 1km level, aerosol number concentration shows a peak of 18,070 cm?3 around the coastline. Most of the aerosol size distribution curves at 0.5 km and 1 km levels are monomodal with a maxima at 110nm diameter which shifts to 70 nm diameter at 2 and 3 km levels. However, at the peak at 1 km level, number concentration has a bimodal distribution with an additional maximum appearing in nucleation mode. It is proposed that this maxima in nucleation mode at 1 km level may be due to the formation and transport of new particles from coastal regions.  相似文献   
6.
7.
The results are presented of complex investigation of clouds in India which were seeded with a glaciogenic reagent from the aircraft. The seeding effect was assessed by the comparison of radar characteristics of the seeded clouds with the characteristics of clouds within the radar field of view. The maximum reflectivity increase in the seeded clouds in comparison with clouds in the natural cycle, an increase in the precipitation flux and specific mass of precipitated hail are observed. The merging of seeded clouds was observed during the study. It is shown that this process affects cloud characteristics resulting in the significant (by several times) increase in the precipitation flux. The measurements of electric discharges registered by the lightning detection network demonstrated that there were no lightning strikes in the seeded clouds, although the calculations indicated an increase in the electric activity of the clouds.  相似文献   
8.
Below-cloud aerosol scavenging is generally estimated from field measurements using advanced instruments that measure changes in aerosol distributions with respect to rainfall. In this study, we discuss various scavenging mechanisms and scavenging coefficients from past laboratory and field measurements. Scavenging coefficients derived from field measurements (representing natural aerosols scavenging) are two orders higher than that of theoretical ones for smaller particles (Dp < 2 μm). Measured size-resolved scavenging coefficients can be served as a better option to the default scavenging coefficient (e.g. a constant of 10?4 s?1 for all size of aerosols, as used in the CALPUFF model) for representing below-cloud aerosol scavenging. We propose scavenging correction parameter (CR) as an exponential function of size-resolved scavenging coefficients, winds and width in the downwind of the source–receptor system. For a wind speed of 3 m s?1, CR decrease with the width in the downwind for particles of diameters Dp < 0.1 μm but CR does not vary much for particles in the accumulation mode (0.1 < Dp < 2 μm). For a typical urban aerosol distribution, assuming 3 m s?1 air-flow in the source–receptor system, 10 km downwind width, 2.84 mm h?1 of rainfall and using aerosol size dependent scavenging coefficients in the CR, scavenging of aerosols is found to be 16% in number and 24% in volume of total aerosols. Using the default scavenging coefficient (10?4 s?1) in the CALPUFF model, it is found to be 64% in both number and volume of total aerosols.  相似文献   
9.
10.
The surface measurements of different atmospheric electrical and meteorological parameters made at a tropical station were analyzed, to study their diurnal variation pattern with specific emphasis on convection current and the meteorological conditions responsible for its generation. The analysis shows that most of the time the displacement current is very small. The convection current is positive for most of the time of the day indicating transport of negative charge to the earth by convection. In spite of very low winds during night, the convection current is found to be more during night than during day. Large space charge density gradient near the earth's surface during stable and stratified atmosphere at night may be a reason for large convection current during that time. This study demonstrates that eddy diffusion during day time and large space charge gradient during night time are responsible for generation of convection current at this location.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号