首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   17篇
地球物理   31篇
地质学   43篇
海洋学   10篇
天文学   9篇
综合类   1篇
自然地理   13篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   9篇
  2013年   11篇
  2012年   10篇
  2011年   11篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   10篇
  2006年   8篇
  2005年   2篇
  2004年   6篇
  2003年   8篇
  2002年   2篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1990年   2篇
  1987年   1篇
  1982年   3篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
Long-term measurements from Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administration satellites were evaluated to assess variability in cloud-top temperatures over central and eastern Europe that saw radical infrastructural changes after the fall of the East Bloc in 1989 that has affected the pollution levels and hence cloud albedo. Four years in the late 1980s (1985-1988) and in the late 1990s (1997-2000) were chosen, as these are distinctively marked as episodes of very high and lower air pollution (sulphates and particulate matter). During the late 1980s, low- and medium-level clouds were colder by more than 2 K and convective clouds even by 4 K. Cloud-tops over and around polluted regions are higher, and their temperatures showed stronger variability, suggesting an indirect aerosol effect in the thermal spectral range as well.  相似文献   
2.
The northern Pacific seastar, Asterias amurensis, was first collected in southeast Tasmania in 1986. Mistaken for the endemic asteroid Uniophora granifera, its true identity was not realised until 1992. It is now a conspicuous predator in soft sediment habitats in this region, and is considered a major threat to native assemblages and commercial species. We examined the structure of soft sediment assemblages at different spatial scales in southeast Tasmania, and correlated spatial variation in community composition with seastar abundances. We found that the structure of soft sediment assemblages is highly variable at a range of spatial scales from metres to tens of kilometres. Clear differences in the composition of assemblages and abundances of major taxa were detected between areas with and without seastars and between areas with low and high seastar densities. However, the nature of these patterns suggests that they are more likely due to differences in sediment characteristics than due to impacts of the seastar. Thus, spatial differences in soft sediment assemblages might have been erroneously attributed to seastars without detailed information on important physical factors such as sediment characteristics. A second survey, using larger sampling units (1 m2) but across a more limited spatial extent, targeted bivalves and heart urchins that were identified as important prey of the seastar in observations of feeding and in experimental studies. Large-scale patterns of abundance and size structure were consistent with seastar effects anticipated from small-scale experimental and feeding studies for some, but not all, species. While the field survey ultimately provided evidence about the presence or absence of seastar impacts at large-scales, the identification of key ecological variables in experimental and feeding studies proved crucial to both the design and interpretation of patterns observed in the large-scale surveys. Overall, this work highlighted the necessity to consider multiple lines of evidence rather than relying on a single ‘inferential’ test, in the absence of pre-impact data.  相似文献   
3.
We utilized nuclear explosions from the Degelen Mountain sub-region of the Semipalatinsk Test Site (STS), Kazakhstan, to assess seismic location capability directly. Excellent ground truth information for these events was either known or was estimated from maps of the Degelen Mountain adit complex. Origin times were refined for events for which absolute origin time information was unknown using catalog arrival times, our ground truth location estimates, and a time baseline provided by fixing known origin times during a joint hypocenter determination (JHD). Precise arrival time picks were determined using a waveform cross-correlation process applied to the available digital data. These data were used in a JHD analysis. We found that very accurate locations were possible when high precision, waveform cross-correlation arrival times were combined with JHD. Relocation with our full digital data set resulted in a mean mislocation of 2 km and a mean 95% confidence ellipse (CE) area of 6.6 km2 (90% CE: 5.1 km2), however, only 5 of the 18 computed error ellipses actually covered the associated ground truth location estimate. To test a more realistic nuclear test monitoring scenario, we applied our JHD analysis to a set of seven events (one fixed) using data only from seismic stations within 40° epicentral distance. Relocation with these data resulted in a mean mislocation of 7.4 km, with four of the 95% error ellipses covering less than 570 km2 (90% CE: 438 km2), and the other two covering 1730 and 8869 km2 (90% CE: 1331 and 6822 km2). Location uncertainties calculated using JHD often underestimated the true error, but a circular region with a radius equal to the mislocation covered less than 1000 km2 for all events having more than three observations.  相似文献   
4.
5.
Exploitation of low-grade iron ore would be quite unique in a South African context as South Africa is well endowed with high-grade iron ore resources. Low-grade iron ore, defined as containing between 20 and 47% iron, is thought to be the primary iron-bearing lithology from which most high-grade ore deposits formed, through different processes of enrichment. The low-grade iron ores in the Northern Province represent meta-banded iron formations (BIFs), with an average iron content of about 36%. The main iron-bearing mineral is magnetite. The Northern Province ores have to be milled to sizes smaller than 150 μm in order to liberate the iron minerals from the host rock, and beneficiation is accomplished through a series of magnetic separation processes. Irrespective of the in situ quality of the ore, final concentrates of exceptionally good quality with more than 69% iron and very low contaminant levels can be produced. This, combined with mass yields of between 40 and 50% and iron recoveries greater than 80%, are excellent for this type of iron ore deposit. The beneficiation products are suitable for use in iron- and steel-making processes. Received: 4 July 1996 / Accepted: 7 January 1997  相似文献   
6.
Mangrove Lagoon, located on the island of St. Croix, US Virgin Islands (USVI), is one of few actively bioluminescent lagoons in a location experiencing significant anthropogenic impacts. The bioluminescence is due to an abundance of the dinoflagellate Pyrodinium bahamense in the water column. We recovered surface sediments and sediment cores from Mangrove Lagoon to analyze the spatial distribution and temporal variability of P. bahamense cysts in this system. Surface sediment P. bahamense cyst concentrations ranged from 0 to 466 cysts g?1 dry sediment, with higher abundances associated with elevated surface water nutrient concentrations and a mixed terrestrial–marine organic matter source regime. In combination with available bioassay data, we hypothesize that phytoplankton utilize nutrients rapidly and subsequent decay of organic matter makes nutrients available for dinoflagellates at the sediment–water interface in the eastern and northern quadrants of the lagoon. However, the nutrients are rapidly exhausted during counterclockwise lagoon circulation resulting in the decline of primary productivity and dinoflagellate abundance in the western quadrants. Downcore profiles suggest that P. bahamense blooms have been occurring for decades, declining in recent years. No cysts were present in sediments predating dredging activities of the 1960s that created Mangrove Lagoon. Recent reductions in cyst abundance may be the result of limited primary productivity caused by restricted water exchange with Salt River Bay due to shallowing of a sill at the mouth of the lagoon. This research highlights the need for more comprehensive geochemical and fossil analyses to better understand long-term ecological variability and inform conservation efforts of these unique habitats.  相似文献   
7.
The LA‐ICP‐MS U‐(Th‐)Pb geochronology international community has defined new standards for the determination of U‐(Th‐)Pb ages. A new workflow defines the appropriate propagation of uncertainties for these data, identifying random and systematic components. Only data with uncertainties relating to random error should be used in weighted mean calculations of population ages; uncertainty components for systematic errors are propagated after this stage, preventing their erroneous reduction. Following this improved uncertainty propagation protocol, data can be compared at different uncertainty levels to better resolve age differences. New reference values for commonly used zircon, monazite and titanite reference materials are defined (based on ID‐TIMS) after removing corrections for common lead and the effects of excess 230Th. These values more accurately reflect the material sampled during the determination of calibration factors by LA‐ICP‐MS analysis. Recommendations are made to graphically represent data only with uncertainty ellipses at 2s and to submit or cite validation data with sample data when submitting data for publication. New data‐reporting standards are defined to help improve the peer‐review process. With these improvements, LA‐ICP‐MS U‐(Th‐)Pb data can be considered more robust, accurate, better documented and quantified, directly contributing to their improved scientific interpretation.  相似文献   
8.
NASA's Genesis mission was flown to capture samples of the solar wind and return them to the Earth for measurement. The purpose of the mission was to determine the chemical and isotopic composition of the Sun with significantly better precision than known before. Abundance data are now available for noble gases, magnesium, sodium, calcium, potassium, aluminum, chromium, iron, and other elements. Here, we report abundance data for hydrogen in four solar wind regimes collected by the Genesis mission (bulk solar wind, interstream low‐energy wind, coronal hole high‐energy wind, and coronal mass ejections). The mission was not designed to collect hydrogen, and in order to measure it, we had to overcome a variety of technical problems, as described herein. The relative hydrogen fluences among the four regimes should be accurate to better than ±5–6%, and the absolute fluences should be accurate to ±10%. We use the data to investigate elemental fractionations due to the first ionization potential during acceleration of the solar wind. We also use our data, combined with regime data for neon and argon, to estimate the solar neon and argon abundances, elements that cannot be measured spectroscopically in the solar photosphere.  相似文献   
9.
Reflection seismic data show that the late Cenozoic Safford Basin in the Basin and Range of south-eastern Arizona, is a 4.5-km-deep, NW-trending, SW-dipping half graben composed of middle Miocene to upper Pliocene sediments, separated by a late Miocene sequence boundary into lower and upper basin-fill sequences. Extension during lower basin-fill deposition was accommodated along an E-dipping range-bounding fault comprising a secondary breakaway zone along the north-east flank of the Pinaleño Mountains core complex. This fault was a listric detachment fault, active throughout the mid-Tertiary and late Cenozoic, or a younger fault splay that cut or merged with the detachment fault. Most extension in the basin was accommodated by slip on the range-bounding fault, although episodic movement along antithetic faults temporarily created a symmetric graben. Upper-plate movement over bends in the range-bounding fault created rollover structures in the basin fill and affected deposition within the half graben. Rapid periods of subsidence relative to sedimentation during lower basin-fill deposition created thick, laterally extensive lacustrine or alluvial plain deposits, and restricted proximal alluvian-fan deposits to the basin margins. A period of rapid extension and subsidence relative to sediment influx, or steepening of the upper segment of the range-bounding fault at the start of upper basin-fill deposition resulted in a large downwarp over a major fault bend. Sedimentation was restricted to this downwarp until filled. Episodic subsidence during upper basin-fill deposition caused widespread interbedding of lacustrine and fluvial deposits. Northeastward tilting along the south-western flank of the basin and north-eastward migration of the depocentre during later periods of upper basin-fill deposition suggest decreased extension rates relative to late-stage core complex uplift.  相似文献   
10.
Sr-isotopic data from the Main and Upper Zones of the Bushveld Complex show that the evolution of the Upper Zone started with a large influx of magma close to the level of the “Pyroxenite Marker”, a distinctive orthopyroxenite layer in otherwise relatively uniform gabbronorites. Whole rock samples, which span the complete stratigraphic succession (ca. 2100 m) above this layer, fall on a single RbSr isochron (2066 ± 58Ma) and hence have a common initial ratio of 0.7073 ± 1. This ratio is significantly lower than those of the Main Zone (ca. 0.7085), below the level of the Pyroxenite Marker.The entire Upper Zone crystallized from a mixed magma which was thoroughly blended before crystallization. This magma had an isotopic ratio intermediate between that of the Main Zone and the added magma which had an initial ratio of ca. 0.7067. Further significant magma additions during crystallization are precluded unless they were of the same isotopic composition as the blended magma, which is considered improbable. Hence the layering and mineralogical diversity of the Upper Zone was produced by internal processes and not produced by magma influxes during crystallization.The lithological, compositional and isotopic changes at the Pyroxenite Marker and the petrological coherence of all rocks above this horizon support the placing of the Upper Zone boundary at this point in the stratigraphy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号