首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
大气科学   1篇
地球物理   5篇
地质学   3篇
海洋学   1篇
天文学   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  1999年   2篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
The paper provides state-of-the-art information on the following aspects of seismic analysis and design of spread footings supporting bridge piers: (1) obtaining the dynamic stiffness (“springs” and “dashpots”) of the foundation; (2) computing the kinematic response; (3) determining the conditions under which foundation–soil compliance must be incorporated in dynamic structural analysis; (4) assessing the importance of properly modeling the effect of embedment; (5) elucidating the conditions under which the effect of radiation damping is significant; (6) comparing the relative importance between kinematic and inertial response. The paper compiles an extensive set of graphs and tables for stiffness and damping in all modes of vibration (swaying, rocking, torsion), for a variety of soil conditions and foundation geometries. Simplified expressions for computing kinematic response (both in translation and rotation) are provided. Special issues such as presence of rock at shallow depths, the contribution of foundation sidewalls, soil inhomogeneity and inelasticity, are also discussed. The paper concludes with parametric studies on the seismic response of bridge bents on embedded footings in layered soil. Results are presented (in frequency and time domains) for accelerations and displacements of bridge and footing, while potential errors from some frequently employed simplifications are illustrated.  相似文献   
2.
3.
Five research cruises were undertaken incorporating ADCP sections along the Cretan Arc Straits and CTD surveys covering the entire area of the Straits and the Cretan Sea. In addition, six moorings (with 15 current meters) were deployed within the Straits, which monitored flows in the surface (50 m), intermediate (250 m), and deep (50 m from the bottom) layers. The ADCP, CM, and CTD datasets enable the derivation of water transports through the Cretan Arc Straits to be assessed. Flow structure through the Cretan Arc Straits is not the typical flow regime with a surface inflow and deep outflow, instead there is a persistent deep outflow of Cretan Deep Water (CDW) (σθ>29.2) with an annual mean of ˜0.6 Sv, through the Antikithira and Kassos Straits at depths below 400 m and 500 m, respectively. CDW outflowing transports are higher (˜0.8 Sv) in April–June, and lower (˜0.3 Sv) in October–December. Within the upper water layer (0–˜400 m), the transport and the water exchanges through the Straits are controlled by local circulation features, which weaken substantially below 200 m. The Asia Minor Current (AMC) influences the Rhodes and the Karpathos Straits, resulting in a net inflow of water. In contrast, the Mirtoan/West Cretan Cyclone influences the Antikithira and Kithira Straits, where there is a net outflow. In the Kassos Strait, there is a complex interaction between the East Cretan Cyclone, the Ierapetra Anticyclone and the westward extension of the Rhodes Gyre, which results in a variable flow regime. There is a net inflow in autumn and early winter, and a switch to a net outflow in early spring and summer. The total inflow and outflow, throughout all of the Straits, ranged from ˜2 to ˜3.5 Sv, with higher values in autumn and early winter and lower in summer. The AMC carries ˜2 Sv of inflow through the Rhodes and Karpathos Straits, and this accounts for 60–80% of the total inflow. About 10–15% of the total outflow is of CDW, and a further 45–70% occurs through the upper 400 m of the Kithira and Antikithira Straits. The Kassos Strait exhibits a net inflow of ˜0.7 Sv in autumn and early winter, with a net outflow of ˜0.5 Sv in early spring and summer.  相似文献   
4.
Strength-reduction factors that reduce ordinates of floor spectra acceleration due to nonlinearity in the secondary system are investigated. In exchange for permitting some inelastic deformation to occur in the secondary system or its supports, these strength reduction factors allow to design the nonstructural elements or their supports for lateral forces that are smaller than those that would be required to maintain them elastically during earthquakes. This paper presents the results of a statistical analysis on component strength-reduction factors that were computed considering floor motions recorded on instrumented buildings in California during various earthquakes. The effect of yielding in the component or its anchorage/bracing in offering protection against excessive component acceleration demands is investigated. It is shown that strength-reduction factors computed from floor motions are significantly different from those computed from ground motions recorded on rock or on firm soils. In particular, they exhibit much larger reductions for periods tuned or nearly tuned to the dominant modal periods of the building response. This is due to the large differences in frequency content of ground motions and floor motions, with the former typically characterized by wide-band spectra whereas the latter are characterized by narrow-band spectra near periods of dominant modes in the response of the building. Finally, the study provides approximate equations to estimate component strength-reduction factors computed through nonlinear regression analyses.  相似文献   
5.
We propose a decision-making approach for optimizing the profitability of hydrocarbon reservoirs. The proposed approach addresses the overwhelming complexity of the overall optimization problem by suggesting an oilfield operations hierarchy that entails different time scales. We discuss system identification, optimization, and control that are appropriate at various levels of the hierarchy and capitalize on the abilities of permanently instrumented and remotely actuated fields. Optimization is performed in real-time and is based on feedback. We provide details on real-time identification of hybrid models and their use at the scheduling and supervisory control levels. Case studies using field-calibrated simulation data demonstrate the applicability and value of the proposed approach. Directions for future development are given.  相似文献   
6.
Geoarchaeological work in conjunction with the Kythera Island Project indicates that significant portions of the island are now or have at some time been terraced. Geoarchaeological observations and local historical records confirm extensive terracing during the last few centuries. Detailed stratigraphic, soil, and sediment analysis along with radiocarbon dating suggest, however, that some of the slopes and small drainages of the island were terraced more than once and that this relatively recent phase of terracing followed earlier efforts, some dating to the early second millennium B.C. (Bronze Age). During each phase of slope organization significant amounts of soil were moved locally on the slopes. Polycyclic terracing has, therefore, interesting implications for surface survey visibility, preservation of archaeological record, early agricultural landscapes and soils, and past land use, as well as for interpretation of local records of Holocene sediment mobilization and valley alluviation. Geoarchaeological investigation of terraces may reveal unique archaeological information not available in urban or village dwelling sites. Early features, such as those reported in this paper, however, usually remain hidden due to the remarkable lack of stratigraphic investigations of non‐site landscapes. © 2008 Wiley Periodicals, Inc.  相似文献   
7.
On the basis of the isotopic composition of water in the northern part of Epirus, Greece, from springs at different altitudes with well-defined recharge areas, the altitude effect on the δ18O value of groundwater is –0.142±0.003ö (100?m)–1 and is uniform over the entire study area. Using the δ18O composition of surface water and groundwaters, the contribution of Ioannina Lake and the channel draining the lake water to the Kalamas River to the recharge of springs and boreholes was confirmed and quantitatively defined. In contrast, the Voidomatis and Vikos Rivers are not sources for recharge of the big springs along their banks. However, water from the Aoos River does replenish the aquifer in the unconsolidated deposits underlying the plain of Konitsa. In addition, limestones of Senonian–Late Eocene ages, dolomites, and limestones of the "Vigles" facies are hydraulically interconnected, and the limestones of the "Pantokrator" facies are hydraulically isolated from the other carbonate formations.  相似文献   
8.
A new method is proposed for the quantitative interpretation of SP field data produced by a polarized ore body and simulated by an inclined sheet. The theoretical concept is based on the study of the amplitude Spectrum. It is shown that the SP amplitude Spectrum is not continuous at zero frequency; this leads to the dip angle determination of the inclined sheet. It is also shown that the SP amplitude spectrum is practically nullified at a characteristic amortization frequency that depends on the depth of the polarized body. The maximum amplitude Spectrum value of the SP gradient is used to estimate the depth to the bottom of the polarized body. Thus, the geometrical parameters h and H, the depths to the top and bottom, respectively, as well as the dip angle of the inclined sheet, can be satisfactorily determined. Some problems may arise in the determination of these parameters, affecting their accuracy, whenever unwanted frequency noise is present.  相似文献   
9.
The dynamic characteristics of two representative R/C bridges on Egnatia Odos motorway in Greece are estimated based on low amplitude ambient and earthquake-induced vibrations. The present work outlines the instrumentation details, algorithms for computing modal characteristics (modal frequencies, damping ratios and modeshapes), modal-based finite element model (FEM) updating methods for estimating structural parameters, and numerical results for the modal and structural dynamic characteristics of the two bridges based on ambient and earthquake induced vibrations. Transverse, bending and longitudinal modes are reliably identified and stiffness-related properties of the piers, deck and elastomeric bearings of the FEMs of the two bridges are estimated. Results provide qualitative and quantitative information on the dynamic behavior of the bridge systems and their components under low-amplitude vibrations. Modeling assumptions are discussed based on the differences in the characteristics identified from ambient and earthquake vibration measurements. The sources of the differences observed between the identified modal and structural characteristics of the bridges and those predicted by FEMs used for design are investigated and properly justified.  相似文献   
10.
We review the origin and evolution of the atmospheres of Earth, Venus and Mars from the time when their accreting bodies were released from the protoplanetary disk a few million years after the origin of the Sun. If the accreting planetary cores reached masses \(\ge 0.5 M_\mathrm{Earth}\) before the gas in the disk disappeared, primordial atmospheres consisting mainly of H\(_2\) form around the young planetary body, contrary to late-stage planet formation, where terrestrial planets accrete material after the nebula phase of the disk. The differences between these two scenarios are explored by investigating non-radiogenic atmospheric noble gas isotope anomalies observed on the three terrestrial planets. The role of the young Sun’s more efficient EUV radiation and of the plasma environment into the escape of early atmospheres is also addressed. We discuss the catastrophic outgassing of volatiles and the formation and cooling of steam atmospheres after the solidification of magma oceans and we describe the geochemical evidence for additional delivery of volatile-rich chondritic materials during the main stages of terrestrial planet formation. The evolution scenario of early Earth is then compared with the atmospheric evolution of planets where no active plate tectonics emerged like on Venus and Mars. We look at the diversity between early Earth, Venus and Mars, which is found to be related to their differing geochemical, geodynamical and geophysical conditions, including plate tectonics, crust and mantle oxidation processes and their involvement in degassing processes of secondary \(\hbox {N}_2\) atmospheres. The buildup of atmospheric \(\hbox {N}_2\), \(\hbox {O}_2\), and the role of greenhouse gases such as \(\hbox {CO}_2\) and \(\hbox {CH}_4\) to counter the Faint Young Sun Paradox (FYSP), when the earliest life forms on Earth originated until the Great Oxidation Event \(\approx \) 2.3 Gyr ago, are addressed. This review concludes with a discussion on the implications of understanding Earth’s geophysical and related atmospheric evolution in relation to the discovery of potential habitable terrestrial exoplanets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号