首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   6篇
  国内免费   1篇
大气科学   4篇
地球物理   1篇
地质学   25篇
天文学   1篇
自然地理   2篇
  2018年   1篇
  2015年   3篇
  2014年   4篇
  2013年   1篇
  2011年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1973年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Recent (<50 years old) freshwater cyanobacterial carbonates from diverse environments (streams, lakes, waterfalls) throughout Britain and Ireland were analysed for their stable carbon and oxygen isotope compositions. The mean δ18O value of ?5–9‰ PDB for river and stream data represents calcite precipitation in equilibrium with the mean oxygen isotopic composition of precipitation in central Britain (?7–5‰SMOW) assuming a mean water temperature of 9°C. The mean δ18O of lake data, ?4–5‰ PDB, is statistically different, reflecting the effects of residence time and/or variations in the oxygen isotopic composition of rainfall. Carbon isotopes have wide variations in both fluviatile and lake data sets (+ 3 to ?12‰ PDB). These variations are principally controlled in the fluviatile samples by contribution of isotopically light ‘soil zone’ carbon relative to isotopically heavier carbon from limestone aquifer rock dissolution. Lake samples have the heaviest carbon isotope values, reflecting a trend toward isotopic equilibrium between atmospheric CO2 and aqueous HCO?3. We infer that isotopic compositions of ancient cyanobacterial carbonates should also record environmental information, although the effects of stabilization and diagenesis on primary δ18O values will need careful consideration. Primary carbon isotope compositions should be well preserved, although in marine samples values will be buffered by the isotopic composition of aqueous marine bicarbonate.  相似文献   
6.
The lowermost Carboniferous rocks in the Cockburnspath area of east Berwickshire (southern Scotland) are interpreted as coastal floodplain sediments. A lower mudstone-dominated unit is composed of silty mudstones and shales with subordinate sandstones and argillaceous ferroan dolomites (cementstones). These are interpreted as distal floodplain sediments with periodic crevasse-splay deposition. The dark grey colour of the mudrocks suggests deposition in reducing conditions, probably in floodplain lakes. Most of the cementstones are concretionary, some with septarian cracks, suggesting an early diagenetic origin. An immature palaeosol suggests periodic pedogenesis under improved drainage. A synsedimentary erosion surface indicates incision of a valley into the floodplain, presumably in response to base-level lowering. An upper sandstone-dominated unit starts with fine-grained rippled sandstones, cut by small channel sandstones. These are interpreted as floodplain lake deposits fed by crevasse channels. A distinctive conglomerate with cementstone clasts, wood fragments and fish remains is interpreted as a major overbank deposit, dumped into a pre-existing floodplain lake. A bivalve fauna was established in the overlying mudstones, followed by a thin limestone with a restricted marine fossil assemblage, showing that seawater flooding of the lakes occurred at times. Mudrocks throughout the sequence contain no pyrite, except for the marine band which has an organic-carbon/sulphur ratio and degree of pyritization value typical of marine sediments. The concretionary cementstones have δ13C values around —4 to —6%0/00 PDB which are interpreted as indicative of anaerobic oxidation of organic matter. The combined geochemical data suggest a significant involvement of iron reduction in cementstone formation, although the δ13C values are ambiguous in assessing the relative involvement of methanogenesis and methane oxidation. Limited seawater inundation of the floodplains might have supplied magnesium and calcium ions for dolomite formation assuming that any H2S derived as a result of sulphate reduction was oxidized by iron reduction. Alternatively a weathering source for solutes might have been involved.  相似文献   
7.
Lichen diameters and radiocarbon dates from the western and southern margins of the Barnes Ice Cap yield a growth curve similar to that from southeastern Baffin Island. As a consequence, the moraine chronology of the northern and western Barnes Ice Cap needs revision, as does the chronology of the large proglacial lakes that existed north of the present Barnes Ice Cap. The revised chronology indicates that moraines were formed along the western margin of the Barnes Ice Cap during the following intervals: (1) less than 100 years ago; (2) 400–500 B.P.; (3) ca. 750 B.P.; (4) ca. 1000 B.P.; (5) ca. 1600 B.P.; (6) ca. 2100 B.P.; and (7) 2800 to 3100 B.P. As the western margin of the Barnes Ice Cap retreated, punctuated by stillstands and readvances, the northern margin of the Barnes Ice Cap lay athwart a series of westerly draining valleys, and a complex of proglacial lakes were dammed between the ice margin and the height of land. This sequence is traced by means of well-developed shorelines, lacustrine deltas, and spillways; specific lake levels are dated by lichenometry.
The Barnes Ice Cap moraine sequence is more complex than other Neoglacial records fringing mountain glaciers in Colorado, Alaska and Lappland. However, the chronology for the western Barnes Ice Cap closely resembles independent moraine chronology of mountain glaciers in Cumberland Peninsula, Baffin Island, and thus indicates that the difference between the Baffin Island climatic record and the general Neoglacial/Holocene climatic record (Denton & Karlén, Quaternary Research 7 , 1977) is real. Comparison of specific data from Swedish Lappland and Baffin Island shows substantial agreement. Although Neoglacial records may be globally synchronous, the case for a 2500 year periodicity of glacial fluctuations is not proven: a 300 to 600 year return interval is suggested for the period between 0 and 3000 B.P.  相似文献   
8.
Eight Labrador Sea piston cores with faunal and ash-zone stratigraphies correlated to deep-sea oxygen isotope stages were used to compute Labrador Sea terrigenous sand input rates (mg/cm2/1000 years) during the last 100,000 years. Sources of the sand in Labrador Sea cores are likely to be ice-rafting, turbid glacial meltwater inflow or deflation and wind erosion of unvegetated landscapes in the wake of retreating continental ice sheets. High levels of sand input to the Labrador Sea are therefore undoubtedly glacier-related while low levels of sand input are not. Comparison of the history of Labrador Sea sand input with the chronology of glacial and non-glacial events on Baffin Island reveals that the era of highest sand input rates, the isotopic stage 5a/4 transition, closely coincided with an episode of early Foxe glacier advance to tidewater (Ayr Lake Stade) along the outer coast of Baffin Island ca. 80,000 B.P. to 60,000 B.P. The period of lowest Labrador Sea sand input rates, late isotopic stage 3 to the present, largely corresponds to a major disconformity in the raised marine and glacigenic sediments on Baffin Island, but includes also the late Foxe/early Holocene Cockburn glacial advance (which did not reach the outer coast of the island) and the modern glacial minimum. Labrador Sea and central-subpolar North Atlantic sand input histories are reciprocally related over the last 80,000 years. Accelerated sand input in the Labrador Sea during times of reduced sand input in the North Atlantic implies: (1) major early Wisconsin glacier expansion in the circum Labrador Sea/Baffin Bay region and/or; (2) a surface circulation pattern in the North Atlantic which inhibited iceberg melting there while delivering icebergs and relatively warm surface water into the Labrador Sea. Conversely, reduced sand input in the Labrador Sea during times of accelerated sand input in the North Atlantic implies: (1) late Wisconsin glacier recession in the circum Labrador Sea/Baffin Bay region and/or; (2) a circulation pattern which carries icebergs southward and eastward away from the Labrador Sea. These implications are discussed in the light of paleoceanographic evidence for three periods - 80,000 B.P. to 57,000 B.P.; 25,000 B.P. to 13,000 B.P.; and 13,000 B.P. to 9800 B.P  相似文献   
9.
10.
Twelve 1–2 m, 10-cm-diameter gravity cores collected in 1988 and 1991, from the continental shelf and fjords of East Greenland near Kangerlussuaq Fjord/Trough (ca. 68°N, 32°W), have distinct changes in lithofacies and in the quantity of iceberg rafted (IRD) sediments. These changes are readily observed in X-radiographs of the split cores. We quantify the IRD contribution through grain-size analyses and counting the number of clasts >2 mm from the X-radiographs. Chronological control is provided by acclerated mass spectroscopy 14C dates on foraminifera. During deglaciation, after 14 cal.ka there was one interval of IRD accumulation ca. 12–13 cal.ka, followed by a brief return to IRD conditions centred at 9 cal.ka. Thereafter, a prominent feature of most cores on the shelf is an increase in IRD accumulation that started ca. 5–6 cal.ka, and which has increased toward the present. Indicators of iceberg rafting, such as the net sand flux and numbers of clasts >2 mm ka−1, follow a power law distribution when graphed against distance from the present East Greenland coast, a measure of the position of the glacier margins. The form of the relationship indicates that there is a dramatic decrease in the supply of sediment from the fjords to the shelf. These relationships are used to estimate changes in the location of the ice margin during the late Quaternary based on a site on the East Greenland slope, Denmark Strait, and to discuss factors that can negate such a simple transfer function. © 1997 by John Wiley & Sons Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号