首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
大气科学   2篇
  2022年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
低海拔地区冬季由于凝冻常常会使风向风速传感器冻结,造成风要素资料失真或监测数据缺测,影响数据可用性,造成气象数据历史延续空白,导致无法弥补的历史数据损失。该文利用三穗县国家基准气候站2008—2020年冬季逐日、逐时、逐分钟风向风速、气温、相对湿度以及降水等地面气象监测资料,详细分析冬季冰冻期间风向风速缺测时段的气温、相对湿度、降水等相关信息,找出风向风速冻结与气温、相对湿度、风速大小的对应关系,从而判定风向、风速易冻结的气象要素阈值,采用USB碳纤维发热片,科学搭建低压加热方式,确保风向、风速传感器设备加热时不被灼伤受损,ZQZ-TF风向、风速监测资料连续可靠。  相似文献   
2.
该文利用2010—2020年三穗县9个乡镇气象观测站降水资料,结合地形特征,运用对比分析方法,探讨三穗强降水天气时空分布特征与地形的关系。结果表明:5—9月是三穗强降水高发期,占全年强降水总次数的86.7%;在汛期相同环境条件下,由于三穗地形四周高、中心低,强降水大值中心分布在台烈—良上等偏西偏南一带,与三穗南高北低、西高东低的地形基本吻合,且降水不同量级日数分布与地形分布存在一致性,均呈现南部多于北部。另外,雨带多从偏西北、偏西、西南等方向进入并影响三穗,但受地形的影响降水呈不同的分布,尤其西南部地势较高并处于迎风坡,交汇气流在此停留时间较长,导致该处更容易出现强降水天气过程,且降水量往往更大。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号