首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   6篇
地质学   8篇
海洋学   3篇
自然地理   3篇
  2021年   1篇
  2018年   6篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2002年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有24条查询结果,搜索用时 140 毫秒
1.
Many catalogues, agency reports and research articles have been published on seismicity of Turkey and its surrounding since 1950s. Given existing magnitude heterogeneity, erroneous information on epicentral location, event date and time, this past published data however is far from fulfilling the required standards. Paucity of a standardized format in the available catalogues have reinforced the need for a refined and updated catalogue for earthquake related hazard and risk studies. During this study, ~37,000 earthquakes and related parametric data were evaluated by utilizing more than 41 published studies and, an integrated database was prepared in order to analyse all parameters acquired from the catalogues and references for each event. Within the scope of this study, the epicentral locations of M ≥ 5.0 events were firstly reappraised based on the updated Active Fault Map of Turkey. An improved catalogue of 12.674 events for the period 1900–2012 was as a result recompiled for the region between 32–45N° and 23–48E° by analyzing in detail accuracy of all seismological parameters available for each event. The events consist of M ≥ 4.0 are reported in several magnitude scales (e.g. moment magnitude, Mw; surface wave magnitude, MS; body-wave magnitude mb; local magnitude ML and duration magnitude Md) whereas the maximum focal depth reaches up to 225-km. In order to provide homogenous data, the improved catalogue is unified in terms of Mw. Fore-and aftershocks were also removed from the catalogue and completeness analyses were performed both separately for various tectonic sources and as a whole for the study region of interest. Thus, the prepared homogenous and declustered catalogue consisting of 6573 events provides the basis for a reliable input to the seismic hazard assessment studies for Turkey and its surrounding areas.  相似文献   
2.
We have updated the active fault map of Turkey and built its database within GIS environment. In the study, four distinct active fault types, classified according to geochronological criteria and character, were delineated on the 1:25,000 base map of Turkey. 176 fault segments not included in the former active fault map of Turkey, have been identified and documented. We infer that there are 485 single fault segments which are substantially potential seismic sources. In total 1964 active-fault base-maps were transferred into the GIS environment. Each fault was attributed with key parameters such as class, activity, type, length, trend, and attitude of fault plane. The fault parameters are also supported by slip-rate and seismogenic depth inferred from available GPS, seismological and paleoseismological data. Additionally, expected maximum magnitude for each fault segment was estimated by empirical equations. We present the database in a parametric catalogue of fault segments to be of interest in earthquake engineering and seismotectonics. The study provides essential geological and seismological inputs for regional seismic hazard analysis of all over Turkey and its vicinity.  相似文献   
3.
A review on the historical evolution of seismic hazard maps in Turkey is followed by summarizing the important aspects of the updated national probabilistic seismic hazard maps. Comparisons with the predecessor probabilistic seismic hazard maps as well as the implications on the national design codes conclude the paper.  相似文献   
4.
During New Euxinian time when sea level dropped below the sill connecting the Black and Marmara seas, the Black Sea became isolated and freshwater sediments were deposited. Now it is a semieuxinic basin with the oxic/anoxic boundary at 100–150 m. The seasonal changes in sedimentation are preserved in the form of laminated sequences. The counting of varves in southeastern Black Sea cores show the chronology of the O2/H2S interface. The age of the Holocene sapropel along the eastern margin ranges from 4000 to 1000 yr BP in deep water and 2500—1000 yr BP in shallower water. Sapropel formation started at 3650 yr BP at a water depth of 2200 m.  相似文献   
5.
In this paper, we consider the use of multiple antennas and space-time coding for high data rate underwater acoustic (UWA) communications. Recent advances in information theory have shown that significant capacity gains can be achieved by using multiple-input-multiple-output (MIMO) systems and space-time coding techniques for rich scattering environments. This is especially significant for the UWA channel where the usable bandwidth is severely limited due to frequency-dependent attenuation. In this paper, we propose to use space-time coding and iterative decoding techniques to obtain high data rates and reliability over shallow-water, medium-range UWA channels. In particular, we propose to use space-time trellis codes (STTCs), layered space-time codes (LSTCs) and their combinations along with three low-complexity adaptive equalizer structures at the receiver. We consider multiband transmissions where the available bandwidth is divided into several subbands with guard bands in between them. We describe the theoretical basis of the proposed receivers along with a comprehensive set of experimental results obtained by processing data collected from real UWA communications experiments carried out in the Pacific Ocean. We demonstrate that by using space-time coding at the transmitter and sophisticated iterative processing at the receiver, we can obtain data rates and spectral efficiencies that are not possible with single transmitter systems at similar ranges and depths. In particular, we have demonstrated reliable transmission at a data rate of 48 kb/s in 23 kHz of bandwidth, and 12 kb/s in 3 kHz of bandwidth (a spectral efficiency of 4 bs-1Hz-1) at a 2-km range.  相似文献   
6.
As a result of industrialization, throughout the world, cities have been growing rapidly for the last century. One typical example of these growing cities is Istanbul, the population of which is over 10 million. Due to rapid urbanization, new areas suitable for settlement and engineering structures are necessary. The Cekmece area located west of the Istanbul metropolitan area is studied, because the landslide activity is extensive in this area. The purpose of this study is to develop a model that can be used to characterize landslide susceptibility in map form using logistic regression analysis of an extensive landslide database. A database of landslide activity was constructed using both aerial-photography and field studies. About 19.2% of the selected study area is covered by deep-seated landslides. The landslides that occur in the area are primarily located in sandstones with interbedded permeable and impermeable layers such as claystone, siltstone and mudstone. About 31.95% of the total landslide area is located at this unit. To apply logistic regression analyses, a data matrix including 37 variables was constructed. The variables used in the forwards stepwise analyses are different measures of slope, aspect, elevation, stream power index (SPI), plan curvature, profile curvature, geology, geomorphology and relative permeability of lithological units. A total of 25 variables were identified as exerting strong influence on landslide occurrence, and included by the logistic regression equation. Wald statistics values indicate that lithology, SPI and slope are more important than the other parameters in the equation. Beta coefficients of the 25 variables included the logistic regression equation provide a model for landslide susceptibility in the Cekmece area. This model is used to generate a landslide susceptibility map that correctly classified 83.8% of the landslide-prone areas.  相似文献   
7.
The seismic zoning map of Turkey that is used in connection with the national seismic design code (versions issued both in 1997 and 2007) is based on a probabilistic seismic hazard assessment study conducted more than 20 years ago (Gülkan et al. in En son verilere göre haz?rlanan Türkiye deprem bölgeleri haritas?, Report No: METU/EERC 93-1, 1993). In line with the efforts for the update of the seismic design code, the need aroused for an updated seismic hazard map, incorporating recent data and state-of-the-art methodologies and providing ground motion parameters required for the construction of the design spectra stipulated by the new Turkish Earthquake Design Code. Supported by AFAD (Disaster and Emergency Management Authority of Turkey), a project has been conducted for the country scale assessment of the seismic hazard by probabilistic methods. The present paper describes the probabilistic seismic hazard assessment study conducted in connection with this project, incorporating in an area source model, all recently compiled data on seismicity and active faulting, and using a set of recently developed ground motion prediction equations, for both active shallow crustal and subduction regimes, evaluated as adequately representing the ground motion characteristics in the region. The area sources delineated in the model are fully parameterized in terms of maximum magnitude, depth distribution, predominant strike and dip angles and mechanism of possible ruptures. Resulting ground motion distributions are quantified and presented for PGA and 5 % damped spectral accelerations at T = 0.2 and 1.0 s, associated with return periods of 475 and 2475 years. The full set of seismic hazard curves was also made available for the hazard computation sites. The second part of the study, which is based on a fault source and smoothed seismicity model is covered in Demircioglu et al. in Bull Earthq Eng, (2016).  相似文献   
8.
9.
The Manyas fault zone (MFZ) is a splay fault of the Yenice Gönen Fault, which is located on the southern branch of the North Anatolian Fault System. The MFZ is a 38 km long, WNW–ESE-trending and normal fault zone comprised of three en-echelon segments. On 6 October 1964, an earthquake (Ms = 6.9) occurred on the Salur segment. In this study, paleoseismic trench studies were performed along the Salur segment. Based on these paleoseismic trench studies, at least three earthquakes resulting in a surface rupture within the last 4000 years, including the 1964 earthquake have been identified and dated. The penultimate event can be correlated with the AD 1323 earthquake. There is no archaeological and/or historical record that can be associated with the oldest earthquake dated between BP 3800 ± 600 and BP 2300 ± 200 years. Additionally, the trench study performed to the north of the Salur segment demonstrates paleoliquefaction structures crossing each other. The surface deformation that occurred during the 1964 earthquake is determined primarily to be the consequence of liquefaction. According to the fault plane slip data, the MFZ is a purely normal fault demonstrating a listric geometry with a dip of 64°–74° to the NNE.  相似文献   
10.
The paper discusses the parameters derived through deep-sea precision CTD-probings, characteristic of the structure of the near-bottom boundaries layer, specifically, the depth of the layer's upper boundary and the mean vertical potential temperature/salinity gradients, as well as the density ratio over the layer of the near-bottom convection. The peculiarities of the parameters' spatial distribution have been identified. The conclusion derived from the analysis of the model implies that the near-bottom boundary layer occurs, aside from the presence of the bottom geothermal heat flux, due to the strong dependence of the Bosphorus salt flux on stratification. The dependence of the Black Sea buoyancy flux and vertical diffusion coefficient on depth has been estimated. Translated by Vladimir A. Puchkin  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号