首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
测绘学   14篇
大气科学   2篇
地球物理   2篇
地质学   2篇
海洋学   6篇
天文学   1篇
  2021年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2005年   2篇
  2004年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
2.
The most important advantage of the low resolution National Oceanic and Atmospheric Administration’s Advanced Very High Resolution Radiometer (NOAA AVHRR) data is its high temporal frequency and high radiometric sensitivity which helps in vegetation detection in the visible and near-infrared spectral regions. In areas where most of the crop cultivation is in large contiguous areas, and if the AVHRR data are selected for time period such that the crop of interest is well discriminated from other crops, these data can be used for monitoring vegetative growth and condition very effectively. The present study deals with the application of AVHRR data for the monitoring of the wheat crop in its seventeen main growing districts of the Rajasthan state. The fourteen date AVHRR data covering the entire growth period have been used to generate the normalized difference vegetation index (NDV1) growth profile for the crop by masking the non-crop pixels following the two-date NDVI change method. The growth profile parameters and other derived parameters, such as post-anthesis senescence rate and areas under the entire growth profile or under selected growth periods have been related to the district average wheat yield through statistical regression models. Various methods adopted for wheat pixels masking have been critically evaluated. It is found that the wheat yield can be predicted well by the area under the profile in different growth periods.  相似文献   
3.
The complexity of the laws of dynamics governing 3-D atmospheric flows associated with incomplete and noisy observations make the recovery of atmospheric dynamics from satellite image sequences very difficult. In this paper, we address the challenging problem of estimating physical sound and time-consistent horizontal motion fields at various atmospheric depths for a whole image sequence. Based on a vertical decomposition of the atmosphere, we propose a dynamically consistent atmospheric motion estimator relying on a multilayer dynamic model. This estimator is based on a weak constraint variational data assimilation scheme and is applied on noisy and incomplete pressure difference observations derived from satellite images. The dynamic model is a simplified vorticity-divergence form of a multilayer shallow-water model. Average horizontal motion fields are estimated for each layer. The performance of the proposed technique is assessed using synthetic examples and using real world meteorological satellite image sequences. In particular, it is shown that the estimator enables exploiting fine spatio-temporal image structures and succeeds in characterizing motion at small spatial scales.  相似文献   
4.
Coronal holes (CHs) play a significant role in making the Earth geo-magnetically active during the declining and minimum phases of the solar cycle. In this study, we analysed the evolutionary characteristics of the Recurring CHs from the year 1992 to 2016. The extended minimum of Solar Cycle 23 shows unusual characteristics in the number of persistent coronal holes in the mid- and low-latitude regions of the Sun. Carrington rotation maps of He 10830 Å and EUV 195 Å observations are used to identify the Coronal holes. The latitude distribution of the RCHs shows that most of them are appeared between \(\pm 20^{\circ }\) latitudes. In this period, more number of recurring coronal holes appeared in and around \(100^{\circ }\) and \(200^{\circ }\) Carrington longitudes. The large sized coronal holes lived for shorter period and they appeared close to the equator. From the area distribution over the latitude considered, it shows that more number of recurring coronal holes with area \(<10^{21}~\mbox{cm}^{2}\) appeared in the southern latitude close to the equator. The rotation rates calculated from the RCHs appeared between \(\pm 60^{\circ }\) latitude shows rigid body characteristics. The derived rotational profiles of the coronal holes show that they have anchored to a depth well below the tachocline of the interior, and compares well with the helioseismology results.  相似文献   
5.
Sediment resuspension during and after mechanical excavation of macrophytes may have a significant impact on resident fish populations. Unfortunately, little is known about the influence of this sediment on the respiratory performance and feeding abilities of fishes in New Zealand waterways. We examined the effects of suspended sediment (SS) concentrations previously observed after a large-scale macrophyte removal operation on oxygen consumption (MO2) and feeding rates of brown trout (Salmo trutta). MO2 at 0 mg L?1, 150 mg L?1, 300 mg L?1, 450 mg L?1 and 600 mg L?1 of SS was measured using semi-closed respirometry. Feeding rates at the same SS concentrations were also measured using laboratory tank experiments. Results suggest that SS concentrations up to 600 mg L?1 have no effect on MO2. Conversely, feeding rates were significantly reduced at 450 mg L?1 (22% reduction) and 600 mg L?1 (31% reduction), indicating that sediment concentrations above 450 mg L?1 may negatively affect brown trout populations.  相似文献   
6.
Abstract

A methodology has been developed to normalize the multi‐temporal NDVIs derived from NOAA AVHRR data for the atmospheric effects to the least affected NDVI for development of spectral and spectrometeorological (or spectromet, for short) crop yield models. This is found to reduce the noise in NDVI due to varying atmospheric conditions from season to season and improve the predictability of statistical multiple linear regression yield models. The spectromet yield models for mustard crop in the nine districts of Rajasthan state haven been developed based on normalized NDVIs and have been validated by comparing the predicted yields with the estimated from crop cutting experiments by the state Development of Agriculture.  相似文献   
7.
Hyperspectral remote sensing, because of its large number of narrow bands, has shown possibility of discriminating the crops. Current study was carried out to select the optimum bands for discrimination among pulses, cole crops and ornamental plants using the ground-based Hyperspectral data in Patha village, Lalitpur district, Uttar Pradesh state and Kolkata, West Bengal state. The field observations of reflectance were taken using a 512-channel spectroradiometer with a range of 325–1075 nm. The stepwise discriminant analysis was carried out and separability measures, such as Wilks’ lambda and F-Value were used as criteria for identifying the narrow bands. The analysis showed that, the best four bands for pulse crop discrimination lie mostly in NIR and early MIR regions i.e. 750, 800, 940 and 960 nm. Within cole crops discrimination is primarily determined by the green, red and NIR bands of 550, 690, 740, 770 and 980 nm. The separability study showed the bands 420,470,480,570,730,740, 940, 950, 970, 1030 nm are useful for discriminating flowers.  相似文献   
8.
Cropping system study is not only useful to understand the overall sustainability of agricultural system, but also it helps in generating many important parameters which are useful in climate change impact assessment. Considering its importance, Space Applications Centre, took up a project for mapping and characterizing major cropping systems of Indo-Gangetic Plains of India. The study area included the five states of Indo-Gangetic Plains (IGP) of India, i.e. Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal. There were two aspects of the study. The first aspect included state and district level cropping system mapping using multi-date remote sensing (IRS-AWiFS and Radarsat ScanSAR) data. The second part was to characterize the cropping system using moderate spatial resolution multi-date remote sensing data (SPOT VGT NDVI) and ground survey. The remote sensing data was used to compute three cropping system performance indices (Multiple Cropping Index, Area Diversity Index and Cultivated Land Utilization Index). Ground survey was conducted using questionnaires filled up by 1,000 farmers selected from 103 villages based on the cropping systems map. Apart from ground survey, soil and water sampling and quality analysis were carried out to understand the effect of different cropping systems and their management practices. The results showed that, rice-wheat was the major cropping system of the IGP, followed by Rice-Fallow-Fallow and Maize-Wheat. Other major cropping systems of IGP included Sugarcane based, Pearl millet-Wheat, Rice-Fallow-Rice, Cotton-Wheat. The ground survey could identify 77 cropping systems, out of which 38 are rice-based systems. Out of these 77 cropping systems, there were 5 single crop systems, occupying 6.5% coverage (of all cropping system area), 56 double crop systems with 72.7% coverage, and 16 triple crop systems with 20.8% coverage. The cropping system performance analysis showed that the crop diversity was found to be highest in Haryana, while the cropping intensity was highest in Punjab state.  相似文献   
9.
There is an urgent necessity to monitor changes in the natural surface features of earth. Compared to broadband multispectral data, hyperspectral data provides a better option with high spectral resolution. Classification of vegetation with the use of hyperspectral remote sensing generates a classical problem of high dimensional inputs. Complexity gets compounded as we move from airborne hyperspectral to Spaceborne technology. It is unclear how different classification algorithms will perform on a complex scene of tropical forests collected by spaceborne hyperspectral sensor. The present study was carried out to evaluate the performance of three different classifiers (Artificial Neural Network, Spectral Angle Mapper, Support Vector Machine) over highly diverse tropical forest vegetation utilizing hyperspectral (EO-1) data. Appropriate band selection was done by Stepwise Discriminant Analysis. The Stepwise Discriminant Analysis resulted in identifying 22 best bands to discriminate the eight identified tropical vegetation classes. Maximum numbers of bands came from SWIR region. ANN classifier gave highest OAA values of 81% with the help of 22 selected bands from SDA. The image classified with the help SVM showed OAA of 71%, whereas the SAM showed the lowest OAA of 66%. All the three classifiers were also tested to check their efficiency in classifying spectra coming from 165 processed bands. SVM showed highest OAA of 80%. Classified subset images coming from ANN (from 22 bands) and SVM (from 165 bands) are quite similar in showing the distribution of eight vegetation classes. Both the images appeared close to the actual distribution of vegetation seen in the study area. OAA levels obtained in this study by ANN and SVM classifiers identify the suitability of these classifiers for tropical vegetation discrimination.  相似文献   
10.
Radarsat ScanSAR Narrow (SN2) data acquired on July 24 and August 17, 1997 were used to analyse the signature of rice crop in West Bengal, India. The analysis showed that the lowland practice of cultivation gives a distinct signature to rice due to the initial water background. The relatively stable backscatter from water bodies in temporal data enhanced the separability of rice fields from water using two date data. Around 94 per cent classification accuracy was achieved for rice crop using two date data. It was feasible to discriminate rice sub-classes based on their planting period like early and late crop. The analysis indicates the suitability of ScanSAR data for large area rice crop monitoring as it has a wide swath of 300 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号