首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   4篇
自然地理   1篇
  2022年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
2.
Phenology is critical to ecosystem carbon quantification, and yet has not been well modeled considering both aboveground and belowground environmental variables. This is especially true for alpine and pan-arctic regions where soil physical conditions play a significant role in determining the timing of phenology. Here we examine how the spatiotemporal pattern of satellite-derived phenology is related to soil physical conditions simulated with a soil physical model on the Tibetan Plateau for the period 1989–2008. Our results show that spatial patterns and temporal trends of phenology are parallel with the corresponding soil physical conditions for different study periods. On average, 1 °C increase in soil temperature advances the start of growing season (SOS) by 4.6 to 9.9 days among different vegetation types, and postpones the end of growing season (EOS) by 7.3 to 10.5 days. Soil wetting meditates such trends, especially in areas where warming effect is significant. Soil thermal thresholds for SOS and EOS, defined as the daily mean soil temperatures corresponding to the phenological metrics, are spatially clustered, and are closely correlated with mean seasonal temperatures in Spring and Autumn, respectively. This study highlights the importance and feasibility of incorporating spatially explicit soil temperature and moisture information, instead of air temperature and precipitation, into phenology models so as to improve carbon modeling. The method proposed and empirical relations established between phenology and soil physical conditions for Alpine ecosystems on the Tibetan plateau could also be applicable for other cold regions.  相似文献   
3.
4.
The spatiotemporal distribution characteristics of soil temperature are a significant, but seldom described signal of climate warming. This study examines the spatiotemporal trends in soil temperature at depths of 10, 20, and 50 cm in the conterminous US during 1948–2008. We find a warming trend of between 0.2 and 0.4 °C at all depths from 1948 to 2008. The lowest soil temperatures are in Colorado and the area where Wyoming, Idaho, and Montana meet. The coastal areas, such as Texas, Florida, and California, experienced the highest soil temperature. In addition, areas that experienced weak cooling in summer soil temperature include Texas, Oklahoma, and Arkansas. Warming was recorded in Arizona, Nevada, and Oregon. In winter, Mississippi, Alabama, and Georgia show a cooling trend, and Montana, North Dakota, and South Dakota have been warming over the 61-year period. Additionally, mix-forest areas experience slightly cooler soil temperature in comparison with air temperature. Shrubland areas experience slightly warmer soil temperature in comparison with air temperature. This study is among the first to analyze the spatiotemporal distribution characteristics of soil temperature in the conterminous US by using multiple site observational data. Improved understanding of the spatially complex responses of soil temperature shall have significant implications for future studies in climate change over the region.  相似文献   
5.
Bangladesh is one of the most vulnerable countries to natural disasters such as droughts in the world. The pre-monsoon Aus rice in Bangladesh depends on rainfall and is threatened by increasing droughts. However, limited information on the changes in Aus rice as well as droughts hamper our understanding of the country’s agricultural resilience and adaption to droughts. Here, we collected all the official statistical data of Aus rice at the district level from 1980 to 2018, and examined the inter...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号