首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
测绘学   2篇
大气科学   1篇
地球物理   3篇
地质学   2篇
海洋学   1篇
综合类   3篇
自然地理   13篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2014年   5篇
  2011年   3篇
  2008年   1篇
  2004年   2篇
  1990年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
林峰  许清辉 《台湾海峡》1990,9(3):251-255
利用潮输沙量的计算方法,估算了闽江口入海口内3个断面所包围区域溶解态镉、铅和铜的收支平衡,从而研究了这些重金属的河口行为。  相似文献   
2.
克拉美丽山位于准噶尔盆地东部,晚古生代克拉美丽洋盆向北俯冲消亡,西伯利亚板块与准噶尔地块在该地区发生碰撞造山。目前,就石炭纪之后克拉美丽山的构造活动存在持续挤压、拉分、伸展、挤压-伸展转换多种观点,构造样式也各不相同。本文应用断层相关褶皱理论,从盆山过渡带现今构造样式入手来探讨克拉美丽山南缘西段盆山耦合机制。研究结果表明,克拉美丽山西段在石炭纪之后经历了中二叠世早期、早三叠世早期、晚三叠世末期、晚侏罗世-早白垩世、晚白垩世早期和古新世末期6 次构造隆升。前4 期相对稳定沉积,晚白垩世早期,晚古生代地层沿着下二叠统底部的泥岩层滑脱面以叠瓦状构造楔样式向南楔入,构造缩短量大于15 km,现今盆山构造样式初步形成。始新世构造楔遭受后期突破断层改造。始新世后,克拉美丽山大规模的构造活动基本停止,地层遭受剥蚀最终形成现今地质结构。  相似文献   
3.
为验证地震作用下格构式锚杆挡墙加固土遗址边坡的有效性,以新疆喀什高台民居土遗址边坡现有加固段为研究对象,利用有限元软件Midas/GTX NX建立三维动力分析模型,对地震作用下格构式锚杆挡墙加固土遗址边坡的变形控制进行研究分析。结果表明:地震作用下土遗址边坡在坡顶与坡脚处产生严重的位移变形,且随着地震持时增加呈现累加效果;土遗址边坡加固后能有效控制水平方向与垂直方向的位移变形,最大位移变形值满足控制要求;土遗址边坡加固后地震作用下的稳定性系数提高至1.54,满足规范要求值1.15。研究成果验证了格构式锚杆挡墙加固土遗址边坡能够有效控制位移变形,并提高稳定性。  相似文献   
4.
近40年天山冰川变化的遥感监测   总被引:3,自引:0,他引:3  
Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.  相似文献   
5.
作为国际河流长期合作开发的重要保障,国际河流流域组织这一联合制度安排备受关注,但参差不齐的绩效表现致使其可行性与有效性引发学者质疑。我国拥有众多国际河流,与之相关的合作开发是中国周边外交的重要抓手,但针对上述问题的研究未能得到国内学者的足够重视。在此背景下,文章首先回顾、梳理了国际河流流域组织的定义与类型,然后重点研判其制度设计特征和有效性,并指明已有研究所面临的方法困境,最后为解开“流域组织如何促进国际河流有效合作”这一难题提出以下研究建议:1)整合国际河流流域组织有效性评价指标并进行全球范围的评价;2)探明国际河流流域组织制度类型所适用的范围与条件;3)厘清不同国际河流流域组织制度设计特征与治理有效性的关系;4)基于过程视角探求国际河流流域组织有效性达成路径;5)采用超越定性与定量研究的新方法;6)立足地缘文明激发国际河流流域组织成员国的文化认同。  相似文献   
6.
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998-2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57% of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998. 2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including (a) low-coverage grassland to medium-coverage grassland, (b) medium-coverage grassland to high-coverage grassland, (c) farmland to other woodland, and (d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relatively stable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.  相似文献   
7.
The impacts of environmental flow controls on the water table and chemistry of groundwater in the Ejina Delta, an arid inland river basin in northwest China, were investigated with field observations in 2001 and 2009. The results indicate that the shallow groundwater level rose by 0–2 m in the upper reaches of the east tributary of the Heihe River and in the areas of Saihantaolai—Dalaikubu during the period of environmental flow controls. The chemical constituents of the groundwater show a distinct spatial heterogeneity with the total dissolved solids (TDS) in the groundwater increasing from the periphery towards the depocenter of the Ejina Basin. In addition, the rate of groundwater cycling in the south of the Ejina Delta increased, and the mineralization of groundwater declined, while the overall mineralization and salinity increased in the northern regions, especially in the depocenter of the Ejina Basin. Since shallow groundwater is important to the ecology of arid regions, and because understanding the changes in the shallow groundwater environment (groundwater level and hydrochemistry) in response to environmental flow controls is essential for the sustainable improvement of the ecological environment, the results of this paper can be used as a reference for watershed water resources planning and management to help maintain the health and proper function of rivers in arid regions.  相似文献   
8.
Inland lakes and alpine glaciers are important water resources on the Tibetan Plateau. Understanding their variation is crucial for accurate evaluation and prediction of changes in water supply and for retrieval and analysis of climatic information. Data from previous research on 35 alpine lakes on the Tibetan Plateau were used to investigate changes in lake water level and area. In terms of temporal changes, the area of the 35 alpine lakes could be divided into five groups: rising, falling-rising, rising-falling, fluctuating, and falling. In terms of spatial changes, the area of alpine lakes in the Himalayan Mountains, the Karakoram Mountains, and the Qaidam Basin tended to decrease; the area of lakes in the Naqu region and the Kunlun Mountains increased; and the area of lakes in the Hoh Xil region and Qilian Mountains fluctuated. Changes in lake water level and area were correlated with regional changes in climate. Reasons for changes in these lakes on the Tibetan Plateau were analyzed, including precipitation and evaporation from meteorological data, glacier meltwater from the Chinese glacier inventories. Several key problems, e.g. challenges of monitoring water balance, limitations to glacial area detection, uncertainties in detecting lake water-level variations and variable region boundaries of lake change types on the Tibetan Plateau were discussed. This research has most indicative significance to regional climate change.  相似文献   
9.
Zhang  Zhenxiang  Yang  Jin  Ou  Qibin  Zhang  Yichi  Qu  Ximo  Guo  Yafei 《Natural Resources Research》2021,30(6):4807-4824
Natural Resources Research - The Ledong area is a typical high temperature and high pressure area in the South China Sea's Yinggehai Basin. The geological structure of this basin is complex,...  相似文献   
10.
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998-2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998.2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including (a) low-coverage grassland to medium-coverage grassland, (b) medium-coverage grassland to high-coverage grassland, (c) farmland to other woodland, and (d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relatively stable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号