首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
大气科学   2篇
地球物理   6篇
地质学   4篇
海洋学   10篇
自然地理   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  2003年   3篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
  1974年   1篇
  1959年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
1.
2.
The northward flow of warm and saline Atlantic Water through the eastern Nordic Seas sustains a spring-bloom ecosystem that hosts some of the world’s largest commercial fish stocks. Abrupt climatic changes, or changes beyond species-specific thresholds, may have severe effects on species abundance and distribution. Here, we utilize a numerical ocean model hindcast to explore the similarities and differences between large-scale anomalies, such as great salinity anomalies, and along-shelf hydrographic anomalies of regional origin, which represent abrupt changes at subannual time scales. The large-scale anomalies enter the Nordic Seas to the south and propagate northward at a speed one order of magnitude less than the Atlantic Water current speed. On the contrary, wind-generated along-shelf anomalies appear simultaneously along the Norwegian continental shelf and propagate northward at speeds associated with topographically trapped Kelvin waves. This process involves changes in the vertical extent of the Atlantic Water along the continental slope. Such a dynamic oceanic response both affects thermal habitats and has the potential to ventilate shelf waters by modifying the cross-shelf transport of nutrients and key prey items for early stages of fish.  相似文献   
3.
The method of Empirical Orthogonal Functions (EOF method) is combined with an objective interpolation technique, kriging, to generate runoff series at ungauged locations. In a case study the results are compared to series interpolated by a combination of EOF analysis and regression using catchment characteristics as independent variables. The results are also compared to linear weighting of an existing runoff series, a commonly used method for spatial interpolation. The influence of altitude on the runoff is studied comparing kriging based on 2 and 3 coordinates. The study showed that the capacity of EOF analysis combined with kriging is as good as the traditionally used linear weighting. The results, when altitude is included in the kriging, are improved.  相似文献   
4.
5.
Information on regional drought characteristics provides critical information for adequate water resource management. This study introduces a method to calculate the probability of a specific area to be affected by a drought of a given severity and demonstrates its potential for calculating both meteorological and hydrological drought characteristics. The method is demonstrated using Denmark as a case study. The calculation procedure was applied to monthly precipitation and streamflow series separately, which were linearly transformed by the Empirical Orthogonal Functions (EOF) method. Denmark was divided into 260 grid-cells of 14×17 km, and the monthly mean and the EOF-weight coefficients were interpolated by kriging. The frequency distributions of the first two (streamflow) or three (precipitation) amplitude functions were then derived. By performing Monte Carlo simulations, amplitude functions corresponding to 1000 years of data were generated. Based on these simulated functions as well as interpolated mean and weight coefficients, long time series of precipitation and streamflow were simulated for each grid-cell. The probability distribution functions of the area covered by a drought and the drought deficit volumes were then derived and combined to produce drought severity-area-frequency curves. These curves allowed an estimation of the probability of an area of a certain extent to have a drought of a given severity, and thereby return periods could be assigned to historical drought events. A comparison of drought characteristics showed that streamflow droughts are less homogeneous over the region, less frequent and last for longer time periods than precipitation droughts.  相似文献   
6.
Induced seismicity (earthquakes caused by injection or extraction of fluids in Earth’s subsurface) is a major, new hazard in the USA, the Netherlands, and other countries, with vast economic consequences if not properly managed. Addressing this problem requires development of predictive simulations of how fluid-saturated solids containing frictional faults respond to fluid injection/extraction. Here, we present a finite difference method for 2D linear poroelasticity with rate-and-state friction faults, accounting for spatially variable properties. Semi-discrete stability and accuracy are proven using the summation-by-parts, simultaneous-approximation-term (SBP-SAT) framework for discretization and boundary condition enforcement. Convergence rates are verified using the method of manufactured solutions and comparison to the analytical solution to Mandel’s problem. The method is then applied to study fault slip triggered by fluid injection and diffusion through high-permeability fault damage zones. We demonstrate that in response to the same, gradual forcing, fault slip can occur in either an unstable manner, as short-duration earthquakes that radiate seismic waves, or as stable, aseismic, slow slip that accumulates over much longer time scales. Finally, we use these simulation results to discuss the role of frictional and elastic properties in determining the stability and nature of slip.  相似文献   
7.
This paper presents the background, objectives, and preliminary outcomes from the first year of activities of the Polish–Norwegian project CHIHE (Climate Change Impact on Hydrological Extremes). The project aims to estimate the influence of climate changes on extreme river flows (low and high) and to evaluate the impact on the frequency of occurrence of hydrological extremes. Eight “twinned” catchments in Poland and Norway serve as case studies. We present the procedures of the catchment selection applied in Norway and Poland and a database consisting of near-natural ten Polish and eight Norwegian catchments constructed for the purpose of climate impact assessment. Climate projections for selected catchments are described and compared with observations of temperature and precipitation available for the reference period. Future changes based on those projections are analysed and assessed for two periods, the near future (2021–2050) and the far-future (2071–2100). The results indicate increases in precipitation and temperature in the periods and regions studied both in Poland and Norway.  相似文献   
8.
Drought may affect all components of the water cycle and covers commonly a large part of the catchment area. This paper examines drought propagation at the catchment scale using spatially aggregated drought characteristics and illustrates the importance of catchment processes in modifying the drought signal in both time and space. Analysis is conducted using monthly time series covering the period 1961–1997 for the Pang catchment, UK. The time series include observed rainfall and groundwater recharge, head and discharge simulated by physically-based soil water and groundwater models. Drought events derived separately for each unit area and variable are combined to yield catchment scale drought characteristics. The study reveals relatively large differences in the spatial and temporal characteristics of drought for the different variables. Meteorological droughts cover frequently the whole catchment; and they are more numerous and last for a short time (1–2 months). In comparison, droughts in recharge and hydraulic head cover typically a smaller area and last longer (4–5 months). Hydraulic head and groundwater discharge exhibit similar drought characteristics, which can be expected in a groundwater fed catchment. Deficit volume is considered a robust measure of the severity of a drought event over the catchment area for all variables; whereas, duration is less sensitive, particular for rainfall. Spatial variability in drought characteristics for groundwater recharge, head and discharge are primarily controlled by catchment properties. It is recommended not to use drought area separately as a measure of drought severity at the catchment scale, rather it should be used in combination with other drought characteristics like duration and deficit volume.  相似文献   
9.
This paper performs a climatological investigation of the surface radiation budget (SRB) in Svalbard, on the basis of the Norwegian Polar Institute's radiation measurements from Ny-Ålesund (1981-1997) and the NASA/Langley Surface Radiation Budget Dataset (1983-1991). The radiation climate is related to meteorological conditions and surface properties, and compared to surface radiation fluxes measured from space. The natural variability of the short-wave and long-wave radiation fluxes in Ny-Ålesund is generally governed by the large annual variation in the incoming light with polar night and polar day conditions, the large changes of surface albedo - especially during spring - and the atmospheric circulation with frequent cyclone passages during winter with alternating periods of warm, humid maritime air from the south and cold, dry Arctic air from the north.
Comparison with the satellite derived surface radiation fluxes shows that NyÅlesund is to a large extent influenced by the "ocean" climate to the west of Svalbard during the summer and autumn, but has a more "continental" radiation climate representative of the more central parts of the island during winter and spring. Ny-Ålesund is located in a fiord on the north-west coast of Svalbard, where the ocean cloud cover and the Arctic sea fog play an important role during the summer. During the winter and spring, however, the fiords are frozen and the drift ice covers a large extent of the surrounding ocean.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号