首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   4篇
地球物理   8篇
地质学   39篇
海洋学   1篇
天文学   13篇
自然地理   3篇
  2023年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1940年   1篇
排序方式: 共有64条查询结果,搜索用时 453 毫秒
1.
In 2005 Geostandards and Geoanalytical Research embarked upon a new initiative for its readers. Key researchers in various fields of geoanalytical technique development and their application were identified and invited to provide reviews pertinent to their expertise. As noted in the first of these publications "…instead of revisiting the historical context or decades of development in each analytical technique, the goal here has been to capture a snapshot of "hot topics" across a range of fields as represented in the… literature" (Hergt et al . 2005). Rather than prepare an annual review, a decision was taken earlier this year to provide a biennial summary of progress and accomplishments, in this case for the years 2004–2005. The principal techniques employed in Earth and environmental sciences are covered here, and include laser ablation and multicollector ICP-MS, ICP-AES, thermal ionisation and secondary ion mass spectrometry, as well as neutron activation analysis, X-ray fluorescence and atomic absorption spectrometry. A comprehensive review of the development of reference materials, often essential to these techniques, is also provided. The contributions assembled serve both to keep readers informed of advances they may be unfamiliar with, but also as a means of showcasing examples of the breadth and depth of work being conducted in these fields.  相似文献   
2.
A new technique for the in situ analysis of Re, Au, Pd, Pt and Rh in natural basalt glass by laser ablation (LA)-ICP-MS is described. The method involves external calibration against NIST SRM 612/613 or 614/615 glass certified reference materials, internal standardisation using Ca, and ablation with a 200 μm wide beam spot and a pulsed laser repetition rate of 50 Hz. Under these conditions, sensitivities for Re, Au, Pd, Pt and Rh analyte ions are ˜ 5000 to 100,000 cps/μg g-1. This is sufficient to make measurements precise to ˜ 10% at the 2-10 μg g-1 level, which is well within the range of concentrations expected in many basalts. For LA-ICP-MS calibration and a demonstration of the accuracy of the technique, concentrations of Re, Au, Pd, Pt and Rh in the NIST SRM 610/611 (˜ 1 to 50 μg g-1), 612/613 (˜ 1 to 7 μg g-1), 614/615 (˜ 0.2 to 2 μg g-1) and 616/617 (˜ 0.004 to 2 μg g-1) glasses were determined by solution-nebulisation (SN)-ICP-MS. Using the 612/613 or 614/615 glasses as calibration standards, LA-ICP-MS measurements of these elements in the other NIST glasses fell within ˜ 15% of those determined by SN-ICP-MS. Replicate LA-ICP-MS analyses of the 612/613 and 614/615 glasses indicate that, apart from certain anomalous domains, the glasses are homogeneous for Re, Au, Pd, Pt and Rh to better than 3.5%. Two LA-ICP-MS analyses of natural, island-arc basalt glasses exhibit large fractionations of Re, Au and Pd relative to Pt and Rh, compared to the relative abundances in the primitive mantle.  相似文献   
3.
This annual review of laser-ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) covers the year 2003. Significant advances were made in understanding laser-sample interactions. In particular, research defined the distribution of particle sizes produced by the interplay of laser wavelength, laser pulse width and the gas environment of ablation. A link between particle sizes and elemental and isotopic fractionation at both the ablation site and in the ICP was established. Experimental 15 7 nm and femtosecond laser systems were tested with promising results. The number of applications of LA-ICP-MS in geology and environmental Earth science continued to grow with particular interest in element concentration and isotope ratio profiling of materials, linking composition to time scales. In situ isotopic ratio measurements were increasingly made using multicollector magnetic sector ICP-MS instruments. Other applications of wide interest included bulk sampling of rocks and ores prepared as lithium borate glasses; low level analysis of platinum-group elements, rhenium and gold in sulfides, metal and silicates; in situ uranium-lead zircon geochronology; and melt and fluid inclusion analysis.  相似文献   
4.
The LA‐ICP‐MS U‐(Th‐)Pb geochronology international community has defined new standards for the determination of U‐(Th‐)Pb ages. A new workflow defines the appropriate propagation of uncertainties for these data, identifying random and systematic components. Only data with uncertainties relating to random error should be used in weighted mean calculations of population ages; uncertainty components for systematic errors are propagated after this stage, preventing their erroneous reduction. Following this improved uncertainty propagation protocol, data can be compared at different uncertainty levels to better resolve age differences. New reference values for commonly used zircon, monazite and titanite reference materials are defined (based on ID‐TIMS) after removing corrections for common lead and the effects of excess 230Th. These values more accurately reflect the material sampled during the determination of calibration factors by LA‐ICP‐MS analysis. Recommendations are made to graphically represent data only with uncertainty ellipses at 2s and to submit or cite validation data with sample data when submitting data for publication. New data‐reporting standards are defined to help improve the peer‐review process. With these improvements, LA‐ICP‐MS U‐(Th‐)Pb data can be considered more robust, accurate, better documented and quantified, directly contributing to their improved scientific interpretation.  相似文献   
5.
Heavy metals are often regarded as toxic to all forms of life and therefore generally undesirable. However, their presence in industrial wastes dumped into the Bristol Channel stimulates the growth of certain bacteria in the water and may therefore hasten the self purification process and not be wholly undesirable in moderation.  相似文献   
6.
7.
This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615–2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.  相似文献   
8.
Apatite is a common U- and Th-bearing accessory mineral in igneous and metamorphic rocks, and a minor but widespread detrital component in clastic sedimentary rocks. U–Pb and Th–Pb dating of apatite has potential application in sedimentary provenance studies, as it likely represents first cycle detritus compared to the polycyclic behavior of zircon. However, low U, Th and radiogenic Pb concentrations, elevated common Pb and the lack of a U–Th–Pb apatite standard remain significant challenges in dating apatite by LA-ICPMS, and consequently in developing the chronometer as a provenance tool.This study has determined U–Pb and Th–Pb ages for seven well known apatite occurrences (Durango, Emerald Lake, Kovdor, Mineville, Mud Tank, Otter Lake and Slyudyanka) by LA-ICPMS. Analytical procedures involved rastering a 10 μm spot over a 40 × 40 μm square to a depth of 10 μm using a Geolas 193 nm ArF excimer laser coupled to a Thermo ElementXR single-collector ICPMS. These raster conditions minimized laser-induced inter-element fractionation, which was corrected for using the back-calculated intercept of the time-resolved signal. A Tl–U–Bi–Np tracer solution was aspirated with the sample into the plasma to correct for instrument mass bias. External standards (Ple?ovice and 91500 zircon, NIST SRM 610 and 612 silicate glasses and STDP5 phosphate glass) along with Kovdor apatite were analyzed to monitor U–Pb, Th–Pb, U–Th and Pb–Pb ratiosCommon Pb correction employed the 207Pb method, and also a 208Pb correction method for samples with low Th/U. The 207Pb and 208Pb corrections employed either the initial Pb isotopic composition or the Stacey and Kramers model and propagated conservative uncertainties in the initial Pb isotopic composition. Common Pb correction using the Stacey and Kramers (1975) model employed an initial Pb isotopic composition calculated from either the estimated U–Pb age of the sample or an iterative approach. The age difference between these two methods is typically less than 2%, suggesting that the iterative approach works well for samples where there are no constraints on the initial Pb composition, such as a detrital sample. No 204Pb correction was undertaken because of low 204Pb counts on single collector instruments and 204Pb interference by 204Hg in the argon gas supply.Age calculations employed between 11 and 33 analyses per sample and used a weighted average of the common Pb-corrected ages, a Tera–Wasserburg Concordia intercept age and a Tera–Wasserburg Concordia intercept age anchored through common Pb. The samples in general yield ages consistent (at the 2σ level) with independent estimates of the U–Pb apatite age, which demonstrates the suitability of the analytical protocol employed. Weighted mean age uncertainties are as low as 1–2% for U- and/or Th-rich Palaeozoic–Neoproterozoic samples; the uncertainty on the youngest sample, the Cenozoic (31.44 Ma) Durango apatite, ranges from 3.7–7.6% according to the common Pb correction method employed. The accurate and relatively precise common Pb-corrected ages demonstrate the U–Pb and Th–Pb apatite chronometers are suitable as sedimentary provenance tools. The Kovdor carbonatite apatite is recommended as a potential U–Pb and Th–Pb apatite standard as it yields precise and reproducible 207Pb-corrected, 232Th–208Pb, and common Pb-anchored Tera–Wasserburg Concordia intercept ages.  相似文献   
9.
The Sittampundi Anorthosite Complex (SAC) in southern India is one of the well exposed Archean layered anorthosite-gabbro-ultramafic rock associations. Here we present high precision geochemical data for the various units of SAC, coupled with zircon U-Pb geochronology and Hf isotopic data for the anorthosite. The zircon ages define two populations, the older yield a concordia age of 2541 ± 13 Ma, which is interpreted as the best estimate of the magmatic crystallization age for the Sittampundi anorthosite. A high-grade metamorphic event at 2461 ± 15 Ma is suggested by the upper intercept age of the younger zircon population. A Neoproterozoic event at 715 ± 180 Ma resulted in Pb loss from some of the metamorphic zircons. The magmatic age of the anorthosite correlates well with the timing of crystallization of the arc-related ~ 2530 Ma magmatic charnockites in the adjacent Salem Block, while the metamorphic age is synchronous with the regional metamorphic event. The geochemical data suggest that the rocks were derived from a depleted mantle source. Sub-arc mantle metasomatism of slab derived fluids and subsequent partial melting produced hydrous, aluminous basalt magma. The magma fractionated at depth to produce a variety of high-alumina basalt compositions, from which the anorthositic complex with its chromite-rich and amphibole-rich layers formed as cumulates within the magma chamber of a supra-subduction zone arc. The coherent initial176Hf/177Hf ratios and positive εHf values (1.7 – 4.5) of the magmatic zircons in the anorthosite are consistent with derivation of a rather homogeneous juvenile parent magma from a depleted mantle source. Our study further confirms that the southern part of the Dharwar Craton was an active convergent margin during the Neoarchean with the generation and emplacement of suprasubduction zone arc magmas which played a significant role in continental growth.  相似文献   
10.
In situ LA-ICPMS U-Pb, trace element, and Hf isotope data in zircon demonstrate a Carboniferous age for eclogite-facies metamorphism in Siluro-Devonian protoliths in the Huwan shear zone, Dabie Mountains, Central China. This age contrasts with the more prevailing Triassic age for high- to ultrahigh pressure (HP to UHP) metamorphism in the Qinling-Dabie-Sulu orogen. Metamorphic zircon in two eclogite samples from Sujiahe is characterized by low Th/U ratios, small negative Eu anomalies, flat HREE patterns, and low 176Lu/177Hf ratios. These geochemical signatures suggest that the zircon crystallized in the presence of garnet and in the absence of plagioclase feldspar. Furthermore, temperatures of ~ 655 and ~ 638 °C, calculated using the Ti content of zircon, are consistent with their formation during eclogite-facies metamorphism. The weighted mean 206Pb/238U age of 309 ± 4 Ma (2δ) for this zircon improves previous age estimates for eclogite-facies metamorphism in the Huwan shear zone, ranging from 420 to 220 Ma. Metamorphic zircon from one eclogite sample from Hujiawan, most likely formed during prograde metamorphism, yields an equivalent age estimate of 312 ± 11 Ma. Magmatic zircon cores in the three samples yield ages for the magmatic protoliths of the eclogites ranging from 420 ± 7 to 406 ± 5 Ma, and post-dating the middle Paleozoic collision of the North China and the Qinling terrain. The zircon crystals in the three eclogite samples display a large variation of εHf (t) values of ? 4.9 to 21.3. The metamorphic zircon overgrowths show the same range of εHf (t) values as those of the inherited magmatic crystal interiors. This suggests that the metamorphic zircon overgrowths may have formed by dissolution-reprecipitation of pre-existing magmatic zircon thereby preserving their original Hf isotopic composition. The high εHf (t) values suggest that the protoliths were derived from depleted mantle sources, most likely Paleotethyan oceanic crust; while the low εHf (t) values are attributed to crustal contamination. Some eclogites in the Huwan shear zone have a distinctive signature of continental crust most probably derived from the Yangtze Craton. The coexistence of Paleozoic oceanic crust and Neoproterozoic continental crust with similar metamorphic ages in the Huwan shear zone implies that Paleozoic Paleotethyan oceanic crust was produced within a marginal basin of the northern Yangtze Craton. The opening of the Paleo-Tethyan ocean was slightly younger than the collision of the North China Craton and the Qinling terrain during the Late Paleozoic in the Qinling-Dabie-Sulu orogen. Subduction of the Paleo-Tethyan oceanic crust and associated continental basement resulted in the 309 ± 2 Ma (2σ) eclogite-facies metamorphism in the Huwan shear zone. The subsequent Triassic continent-continent collision led to the final coalescence of the Yangtze and Sino-Korean cratons. Amalgamation of the Yangtze and North China cratons was, therefore, a multistage process extending over at least 200 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号