首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   2篇
自然地理   4篇
  2022年   1篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 46 毫秒
1
1.
For the reliable assessment of past climate variability, quantitative reconstructions of seasonal temperatures are required. Currently, reconstructions of cold‐season temperatures are scarce, because most biological proxies are biased towards the growing season. Here we test the potential of chrysophyte stomatocysts (or simply ‘cysts’; siliceous resting stages of the golden‐brown algae) as a proxy for cold‐season temperature. Climate reconstructions based on biological proxies are commonly constructed using transfer functions derived from calibration in space. However, the performance of these reconstructions is rarely tested by direct comparison with meteorological data due to limitations of sample resolution or chronological control. We compare a cyst‐based near‐annual reconstruction of ‘date of spring mixing’ from the varved sediments of Lake Silvaplana (Swiss Alps) spanning AD 1870–2004 with climate variables from the same period measured at the lake shore. The high correlation between cyst‐based ‘date of spring mixing’ and cold‐season temperature demonstrates the ability of chrysophyte cysts to archive cold‐season temperature variability. Lake eutrophication, which was extensive during the last 50 years, had no obvious effect on the cyst‐based reconstruction. This study underlines the high potential of chrysophyte cysts as a quantitative proxy for cold‐season climate reconstructions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
2.
3.
Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.  相似文献   
4.
Coastal dunefields have developed on the west coast of Jutland in Denmark over the past 5000 years. The dunefields are situated in a temperate climate zone with frequent high energy wind events. Dunefield development was characterized by repeated periods of transgressive dune formation punctuated by periods of dune stabilization and soil formation. The chronology of dunefield evolution is based on Accelerator Mass Spectrometry (AMS) radiocarbon dating of peaty palaeosols (24 samples) and Optically Stimulated Luminescence (OSL) dating of aeolian sand deposits (19 samples). These dates indicate that the completeness of the stratigraphic record varies considerably, but that the timing of aeolian activity events was identical in the dunefields examined here. Initiation of aeolian activity occurred around 2200 BC, 800 BC, AD 100, AD 1050–1200, and between AD 1550 and 1650. Proxy-climate data from bogs in southwestern Sweden suggest that these periods of dunefield activity were initiated during wet/cool summers. Most likely these climatic situations were associated with a more frequent passage of cyclones across Denmark in the summer seasons (increased storminess) causing aeolian sand movement and dune formation. The continued removal of vegetation in Jutland between 4000 BC and AD 1850 allowed the aeolian sand, when first activated, to move more and more easily across the coastal plains; the final phase of aeolian sand movement between AD 1550–1650 and 1900 had catastrophic implications for many coastal inhabitants in the region.  相似文献   
5.
Cores taken from an ombrotrophic peat bog in the coastal zone of Halland, southwest Sweden, were examined for wind transported mineral grains, pollen and humidity indicators. The core covers the period from 6500 cal. yr BP to present. Ombrotrophic conditions existed from ca. 4200 cal. yr BP onwards. Bog surface wetness fluctuated strongly until ca. 3700 cal. yr BP, with an apparent dominance of dry summer conditions from 4800–4500 cal. yr BP. Local wet shifts occurred around 4300, 2800, 2400 and 1500 cal. yr BP, whereas the most recent 600 years of the record show increasingly dry conditions. Mineral grain content, interpreted as aeolian sand influx (ASI), was used as a proxy for (winter) storm frequency and intensity until ca. 1500 cal. yr BP, after which increasing human impact, as reconstructed by pollen analysis, became a second important potential cause for increased sand drift. Strongly increased storminess occurred at 4800, 4200, 2800–2200, 1500, 1100 and 400–50 cal. yr BP, indicating a dominance of cold and stormy winters during these periods. Many of these storm periods apparently coincide with storm events in other sites in southwestern Scandinavia, suggesting that our ASI record reflects a regional scale climatic signal. Furthermore these stormy periods correlate to well‐known cold phases in the North Atlantic region, suggesting a link to large‐scale fluctuations in atmospheric circulation patterns. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
6.
Journal of Paleolimnology - Paleolimnological records from temperate South-Central Chilean lakes revealed a recent and marked increase in the relative abundances of the key-planktonic diatom...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号