首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  国内免费   4篇
测绘学   1篇
大气科学   16篇
地球物理   3篇
地质学   26篇
海洋学   2篇
自然地理   13篇
  2018年   1篇
  2013年   4篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1978年   1篇
排序方式: 共有61条查询结果,搜索用时 625 毫秒
1.
2.
3.
Calcite dendrite crystals are important but poorly understood components of calcite travertine that forms around many hot springs. The Lýsuhóll hot-spring deposits, located in western Iceland, are formed primarily of siliceous sinters that were precipitated around numerous springs that are now inactive. Calcite travertine formed around the vent and on the discharge apron of one of the springs at the northern edge of the area. The travertine is formed largely of two types (I and II) of complex calcite dendrite crystals, up to 1 cm high, that grew through the gradual addition of trilete sub-crystals. The morphology of the dendrite crystals was controlled by flow direction and the competition for growth space with neighbouring crystals. Densely crowded dendrites with limited branching characterize the rimstone dams whereas widely spaced dendrites with open branching are found in the pools. Many dendrite bushes in the pools nucleated around plant stems. Growth of the dendrite crystals was seasonal and incremental. Calcite precipitation was driven by rapid CO2 degassing of CO2-rich spring waters during the spring and summer. During winter, when snow covered the ground and temperatures were low, opal-A precipitated on the exposed surfaces of the dendrites. Segmentation of dendrite branches by discontinuities coated with opal-A and overgrowth development around sub-crystals resulted from this seasonal growth cycle. The calcite dendrite crystals in the Lýsuhóll travertine differ in morphology from those at other hot springs, such as those at Lake Bogoria, Kenya, and Waikite in New Zealand. Comparison with the calcite dendrite crystals found at those sites shows that dendrite morphology is site-specific and probably controlled by carbonate saturation levels that, in turn, are controlled by the rate of CO2 degassing and location in the spring outflow system.  相似文献   
4.
The Perseverance ultramafic complex is a body of olivine-richkomatiitic rocks spatially associated with the Agnew nickeldeposit, in the Agnew-Wiluna greenstone belt of the ArchaeanYilgarn Block in Western Australia. The complex consists ofa central lenticular body, up to 700 m thick, of olivine adcumulates,flanked by laterally extensive sheet-like bodies of olivineorthocumulates and spinifextextured komatiite flows. Rocks progressivelyfurther away from the central lens have chemical compositionsreflecting higher original proportions of komatiite liquid tocumulus olivine. Parent liquids had MgO contents between 25and 32% MgO, approximately chondritic Al/Ti ratios and HREEpatterns, and moderate depletion in LREE. Olivines within the adcumulate lens show a progressive increasein forsterite content from Fo93 at the bottom to Fo94?5, atthe top. Calculated original olivine compositions in the flankingrocks are similar to those at the base of the central lens.Original olivine nickel contents show a symmetrical variationfrom maximum values of 3500 ppm at the top of the central lens,through minimum values of 1000 ppm at the base and margins ofthe central lens to intermediate values in the distal rocks.The complex as a whole shows evidence for nickel depletion relativeto other komatiite suites. These observations are explained in terms of prolonged eruptionand flow of komatiitic lava down a major flow channel or lavariver. Adcumulates crystallized on the floor and sides of thecentral channel, which was formed at an early stage by thermalerosion of floor rocks. Episodic overflow of the central channelproduced distal ‘flood plain’ rocks consisting ofolivine orthocumulates and layered flows. Lavas became moremagnesian and nickel-rich with time, giving rise to the observedspatial variation in primary olivine composition. Nickel depletionof the earliest lavas is attributed to pre-eruption segregationof large volumes of immiscible Fe-Ni-sulfide, which were concentratedto form the underlying Agnew nickel deposit.  相似文献   
5.
6.
7.
大型现场室内两用直剪仪研制(Ⅱ):试验测试   总被引:5,自引:3,他引:5  
利用新近研制的大型现场室内两用直剪仪,对两种不同性质的砂样进行了剪切试验。在对干砂的直接剪切试验特性进行综述的基础上,从多方面对该大型直剪仪得出的干砂剪切试验数据进行了分析验证,结果表明该大型直剪仪得出的试验数据一致性好、可靠性较高,说明该大型直剪仪的基本剪切性能稳定,可进一步应用于相关岩土材料的试验研究。  相似文献   
8.
Deinstitutionalisation of psychiatric patients since the 1980s has introduced a new population and a new land use to New Zealand's urban areas. This paper reviews the geography of deinstitutionalisation, and investigates whether the North American phenomenon of a service-dependent ghetto can be identified in Dunedin.  相似文献   
9.
U(–Th)–Pb geochronology, geothermobarometric estimates and macro‐ and micro‐structural analysis, quantify the pressure–temperature–time–deformation (PTtD) history of Everest Series schist and calcsilicate preserved in the highest structural levels of the Everest region. Pristine staurolite schist from the Everest Series contains garnet with prograde compositional zoning and yields a P–T estimate of 649 ± 21 ° C, 6.2 ± 0.7 kbar. Other samples of the Everest Series contain garnet with prograde zoning and staurolite with cordierite overgrowths that yield a P–T estimate of 607 ± 25 ° C, 2.9 ± 0.6 kbar. The Lhotse detachment (LD) marks the base of the Everest Series. Structurally beneath the LD, within the Greater Himalayan Sequence (GHS), garnet zoning is homogenized, contains resorption rinds and yields peak temperature estimates of ~650 ± 50 ° C. P–T estimates record a decrease in pressure from ~6 to 3 kbar and equivalent temperatures from structurally higher positions in the overlying Everest Series, through the LD and into GHS. This transition is interpreted to result from the juxtaposition of the Everest Series in the hangingwall with the GHS footwall rocks during southward extrusion and decompression along the LD system. An age constraint for movement on the LD is provided by the crystallization age of the Nuptse granite (23.6 ± 0.7 Ma), a body that was emplaced syn‐ to post‐solid‐state fabric development. Microstructural evidence suggests that deformation in the LD progressed from a distributed ductile shear zone into the structurally higher Qomolangma detachment during the final stages of exhumation. When combined with existing geochronological, thermobarometric and structural data from the GHS and Main Central thrust zone, these results form the basis for a more complete model for the P–T–t–D evolution of rocks exposed in the Mount Everest region.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号