首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
地质学   9篇
海洋学   8篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.  相似文献   
2.
Submarine groundwater discharge (SGD) was quantified at select sites in San Francisco Bay (SFB) from radium (223Ra and 224Ra) and radon (222Rn) activities measured in groundwater and surface water using simple mass balance box models. Based on these models, discharge rates in South and Central Bays were 0.3?C7.4?m3?day?1?m?1. Although SGD fluxes at the two regions (Central and South Bays) of SFB were of the same order of magnitude, the dissolved inorganic nitrogen (DIN) species associated with SGD were different. In the South Bay, ammonium (NH 4 + ) concentrations in groundwater were three-fold higher than in open bay waters, and NH 4 + was the primary DIN form discharged by SGD. At the Central Bay site, the primary DIN form in groundwater and associated discharge was nitrate (NO 3 ? ). The stable isotope signatures (??15NNO3 and ??18ONO3) of NO 3 ? in the South Bay groundwater and surface waters were both consistent with NO 3 ? derived from NH 4 + that was isotopically enriched in 15N by NH 4 + volatilization. Based on the calculated SGD fluxes and groundwater nutrient concentrations, nutrient fluxes associated with SGD can account for up to 16?% of DIN and 22?% of DIP in South and Central Bays. The form of DIN contributed to surface waters from SGD may impact the ratio of NO 3 ? to NH 4 + available to phytoplankton with implications to bay productivity, phytoplankton species distribution, and nutrient uptake rates. This assessment of nutrient delivery via groundwater discharge in SFB may provide vital information for future bay ecological wellbeing and sensitivity to future environmental stressors.  相似文献   
3.
Solution 31P nuclear magnetic resonance (NMR) spectroscopy has recently been used to characterize phosphorus species within marine particles. However, the effects of sample collection, storage and preparation have not been thoroughly examined. In this study, samples of settling particulates collected from a 1200-m sediment trap located in Monterey Bay, California, were subjected to various storage options (i.e., no storage, refrigeration, freezing, and oven-drying and grinding) prior to extraction for solution 31P-NMR spectroscopy. Freezing, refrigerating and drying samples for periods of up to 6 months prior to extraction with 0.25 M NaOH + 0.05 M Na2EDTA increased the concentration of extracted P by an average of 16% relative to samples extracted without storage. Pre-extraction storage also introduced some minor changes in P speciation, by increasing the percentage of orthophosphate by up to 15% and decreasing the percentage of pyrophosphate by up to 5%, relative to the abundances of these P species in samples extracted without storage. Drying caused the biggest changes in speciation, specifically decreasing more extensively the relative percentage of pyrophosphate compared to other treatments. Nevertheless, observed changes in speciation due to sample storage within a specific sample were small relative to differences observed among samples collected sequentially in the same area, or reported differences among samples collected at different locations. Samples were also analyzed by solid-state 31P-NMR spectroscopy before and after extraction, to examine extraction-related changes in P speciation. Comparison of solution with solid-state 31P NMR indicates that extraction with NaOH–EDTA removes the majority of organic esters, but only a variable portion of phosphonates (39–67%). In addition, there was preferential extraction of Ca-associated phosphate over Mg-, Fe- and Al-associated phosphate. Solution 31P NMR enables much higher resolution of P species within samples, particularly when it is important to speciate orthophosphate monoesters and diesters, or if polyphosphates are present. However, combining solid-state 31P NMR with solution 31P NMR spectroscopy for marine particles should be conducted when examining inorganic P speciation and the abundance of phosphonates.  相似文献   
4.
The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources.The average 227Ac activities of nearshore marine end-members range from 0.4 dpm m− 3 at the Gulf of Mexico to 3.0 dpm m− 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018 dpm 227Acex in the ocean, which corresponds to 37 moles, or 8.4 kg. This implies a flux of 127 dpm m−2 y− 1 from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 1015 dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included.Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution.  相似文献   
5.
Multiple tracers of groundwater input (salinity, Si, 223Ra, 224Ra, and 226Ra) were used together to determine the magnitude, character (meteoric versus seawater), and nutrient contribution associated with submarine groundwater discharge across the leeward shores of the Hawai'ian Islands Maui, Moloka'i, and Hawai'i. Tracer abundances were elevated in the unconfined coastal aquifer and the nearshore zone, decreasing to low levels offshore, indicative of groundwater discharge (near-fresh, brackish, or saline) at all locations. At several sites, we detected evidence of fresh and saline SGD occurring simultaneously. Conservative estimates of SGD fluxes ranged widely, from 0.02–0.65 m3 m− 2 d− 1at the various sites. Groundwater nutrient fluxes of 0.04–40 mmol N m− 2 d− 1 and 0.01–1.6 mmol P m− 2 d− 1 represent a major source of new nutrients to coastal ecosystems along these coasts. Nutrient additions were typically greatest at locations with a substantial meteoric component in groundwater, but the recirculation of seawater through the aquifer may provide a means of transferring terrestrially-derived nutrients to the coastal zone at several sites.  相似文献   
6.
Two 14-day experiments conducted in the dry summer (July 2006) and wet winter (March 2007) seasons, respectively, examined tidal, wave-driven, and seasonal variability of submarine groundwater discharge (SGD) at Stinson Beach, CA, using natural radium tracers. Tide stage, tide range, breaker height, and season each explained a significant degree of radium variability in the surf zone. A mass balance of excess radium in the surf zone was used to estimate SGD for each season, confirming larger discharge rates during the wet season. Our results indicate median groundwater discharge rates of 6 to 8 L min−1 m−1 in July 2006 and 38 to 43 L min−1 m−1 in March 2007. SGD from 200 m of Stinson Beach in March 2007 contributed a flux of phosphate and dissolved inorganic nitrogen approximately equal to that associated with all local creeks and streams within 6 km of the study site at that time.  相似文献   
7.
Journal of Paleolimnology - Epikarst estuary response to hydroclimate change remains poorly understood, despite the well-studied link between climate and karst groundwater aquifers. The influence...  相似文献   
8.
Phosphorus distribution in sinking oceanic particulate matter   总被引:2,自引:1,他引:2  
Despite the recognition of the importance of phosphorus (P) in regulating marine productivity in some modern oceanic systems and over long timescales, the nature of particulate P within the ocean is not well understood. We analyzed P concentration in particulate matter from sediment traps and selected core tops from a wide range of oceanic regimes: open ocean environments (Equatorial Pacific, North Central Pacific), polar environments (Ross Sea, Palmer Deep), and coastal environments (Northern California Coast, Monterey Bay, Point Conception). These sites represent a range of productivity levels, temporal (seasonal to annual) distributions, and trap depths (200–4400 m). P associations were identified using an operationally defined sequential extraction procedure. We found that P in the sediment traps is typically composed of reactive P components including acid-insoluble organic P ( 40%), authigenic P ( 25%), and oxide associated and/or labile P ( 21%), with lesser proportions of non-reactive detrital P depending on location ( 13%). The concentrations and fluxes of all particulate P components except detrital P decrease or remain constant with depth between the shallowest and the deepest sediment traps, indicating some regeneration of reactive P components. Transformation from more labile forms of P to authigenic P is evident between the deepest traps and core top sediments. Although for most sites the magnitudes of reactive P fluxes are seasonally variable and productivity dependent, the fractional associations of reactive P are independent of season. We conclude that P is transported from the upper water column to the sediments in various forms previously considered unimportant. Thus, acid-insoluble organic P measurements (typically reported as particulate organic P) likely underestimate biologically related particulate P, because they do not include the labile, oxide-associated, or authigenic P fractions that often are or recently were biologically related. Organic C to reactive P ratios are typically higher than Redfield Ratio and are relatively constant with depth below 300 m suggesting that preferential regeneration of P relative to C occurs predominantly at shallow depths in the water column, but not deeper in the water column (> 300 m). The view of P cycling in the oceans should be revised (1) to include P fractions other than acid-soluble organic P as important carriers of reactive P in rapidly sinking particles, (2) to include the efficient transformation of labile forms of P to authigenic P in the water column as well as in sediments, and (3) to consider the occurrence of preferential P regeneration at very shallow depths.  相似文献   
9.
The phosphate oxygen isotopic composition in naturally occurring particulate phosphatic compounds (δ18Op) can be used as a tracer for phosphate sources and to evaluate the cycling of phosphorus (P) in the environment. However, phosphatic compounds must be converted to silver phosphate prior to isotopic analysis, a process that involves digestion of particulate matter in acid. This digestion will hydrolyze some of the phosphatic compounds such that oxygen from the acid solution will be incorporated into the sample as these phosphatic compounds are converted to orthophosphate (PO43−). To determine the extent of incorporation of reagent oxygen into the sample, we digested various phosphatic compounds in both acid amended with H218O (spiked) and unspiked acid and then converted the samples to silver phosphate for δ18Op analysis. Our results indicate that there is no isotopic fractionation associated with acid digestion at 50 °C. Furthermore, we found that reagent oxygen incorporation is a function of the oxygen to phosphorus ratio (O:P) of the digested compound whereby the percentage of reagent oxygen incorporated into the sample is the same as that which is required to convert all of the P-compounds into orthophosphate. Based on these results, we developed a correction for reagent oxygen incorporation using simple mass balance, a procedure that allows for the determination of the δ18Op of samples containing a mixture of phosphatic compounds. We analyzed a variety of environmental samples for δ18Op to demonstrate the utility of this approach for understanding sources and cycling of P.  相似文献   
10.
In the seasonally stratified Gulf of Aqaba Red Sea, both release by phytoplankton and oxidation by nitrifying microbes contributed to the formation of a primary nitrite maximum (PNM) over different seasons and depths in the water column. In the winter and during the days immediately following spring stratification, formation was strongly correlated (R2 = 0.99) with decreasing irradiance and chlorophyll, suggesting that incomplete reduction by light limited phytoplankton was a major source of . However, as stratification progressed, continued to be generated below the euphotic depth by microbial oxidation, likely due to differential photoinhibition of and oxidizing populations. Natural abundance stable nitrogen isotope analyses revealed a decoupling of the δ15N and δ18O in the combined and pool, suggesting that assimilation and nitrification were co-occurring in surface waters. As stratification progressed, the δ15N of particulate N below the euphotic depth increased from −5‰ to up to +20‰.N uptake rates were also influenced by light; based on 15N tracer experiments, assimilation of , , and urea was more rapid in the light (434 ± 24, 94 ± 17, and 1194 ± 48 nmol N L−1 day−1 respectively) than in the dark (58 ± 14, 29 ± 14, and 476 ± 31 nmol N L−1 day−1 respectively). Dark assimilation was 314 ± 31 nmol N L−1 day−1, while light assimilation was much faster, resulting in complete consumption of the 15N spike in less than 7 h from spike addition. The overall rate of coupled urea mineralization and oxidation (14.1 ± 7.6 nmol N L−1 day−1) was similar to that of oxidation alone (16.4 ± 8.1 nmol N L−1 day−1), suggesting that mineralization of labile dissolved organic N compounds like urea was not a rate limiting step for nitrification. Our results suggest that assimilation and nitrification compete for and that N transformation rates throughout the water column are influenced by light over diel and seasonal cycles, allowing phytoplankton and nitrifying microbes to contribute jointly to PNM formation. We identify important factors that influence the N cycle throughout the year, including light intensity, substrate availability, and microbial community structure. These processes could be relevant to other regions worldwide where seasonal variability in mixing depth and stratification influence the contributions of phytoplankton and non-photosynthetic microbes to the N cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号