首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
测绘学   2篇
地球物理   10篇
地质学   10篇
海洋学   10篇
天文学   1篇
自然地理   3篇
  2020年   1篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2011年   5篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1982年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
The Pacific oyster Crassostrea gigas was introduced in Europe for commercial purposes in the mid 1960s. It was initially thought that low winter temperatures would restrain this species' reproduction and settlement; however, its present distribution in areas where no introduction has taken place suggests that natural invasion and expansion has occurred. Along the European coast, wild populations of Pacific oysters are already found from northern Germany to southern Portugal. Whether C. gigas will continue to further expand through northern waters will depend on its physiological performance. In this study, the performance of wild oyster populations has been studied in terms of growth and reproduction at three stations: La Rochelle (France; 46°N), Yerseke (Oosterschelde estuary, The Netherlands, 51°N), and Texel (Wadden Sea estuary, The Netherlands, 53°N). The French population had the lowest somatic-shell mass ratio and an increase in maximum shell length, somatic and gonadal mass was observed from France to the Netherlands. In addition, mean oocyte diameter decreased significantly from south to north. The combination of increasing gonadal mass and decreasing oocyte volume suggests an increasing reproductive output in terms of egg numbers from France to The Netherlands. Differences in temperature between locations will at least be partly responsible for the observed patterns; however, other environmental factors (such as food availability, predation pressure, sediment type and/or seston concentration) cannot be excluded. Since smaller eggs (oocytes) are thought to have a longer development time, the environmental conditions along the Dutch coast may result in increased larval dispersal and possibly in further population expansion.  相似文献   
2.
The bivalve Spisula subtruncata is usually abundant in shallow coastal waters along the Dutch coast. However, its biomass has been decreasing since 1995. In order to assess whether reproductive failure may be the cause of the observed decline over the last decades, the energy investment in reproduction of a population of S. subtruncata from central Dutch coastal waters was studied. The population studied consisted of individuals of up to four years old. Shell length reached maximum values of around 32 mm and individual total body, somatic and gonadal ash-free dry mass reached maximum values of about 278 mg AFDM, 252 mg AFDM and 76 mg AFDM, respectively. A clear seasonal cycle in somatic and gonadal mass was observed. Somatic and gonadal mass indices increased in early spring and reached maximum values during summer, followed by a decrease to minimum values at the beginning of the following year. Spawning was in June–July and settlement of spat seems to have occurred in July–August. Mean oocyte diameter was 57.43 ± 0.03 μm, corresponding to a volume of 98972 μm3. These results suggested that reproductive failure was not the cause of the current population decline. Most likely, unsuccessful settlement of spat and/or severe predation during the first months of life were responsible for the observed patterns.  相似文献   
3.
Cerastoderma edule and Mya arenaria are two common bivalve species in European waters. Longevity and maximum size are much greater in the latter species. Because comparison of species life-history strategies states that a long life span (i.e. high annual survival) generally goes with lower fecundity, we hypothesise that reproductive output would be lower in M. arenaria than in C. edule. In the present paper, we studied the reproductive strategies of these two species in an intertidal and a subtidal area of the western Dutch Wadden Sea, by following seasonal changes in absolute and relative weights of somatic and gonadal tissues in these bivalves. Starting of spawning was similar in the two species, around May, except for intertidal M. arenaria, which initiated spawning in August. Individual energy investment in reproduction was similar for the two species but, unlike M. arenaria, C. edule spawned completely, releasing all energy of gonadal mass in the form of gametes. Mya arenaria used the gonad not only for reproduction but also for storage. In the intertidal area, we found a trade-off between longevity and reproduction, i.e. maximum reproductive output (expressed as a proportion of body mass) was higher in C. edule than in M. arenaria. However, since body size is larger and life span longer in M. arenaria than in C. edule, mean lifetime reproductive output per individual must be higher in the first than in the latter. Based on the differences in reproductive strategies of these two species, we hypothesise that the negative effects of warming climate on bivalve population dynamics in the Wadden Sea will be stronger in C. edule than in M. arenaria.  相似文献   
4.
An infrared routine has been developed to estimate the aliphatic portion of kerogen carbon in sedimentary rocks. The procedure does not require isolation of the organic matter and is based on a computer-assisted determination of global band areas in the region of the aliphatic carbon-hydrogen stretching vibrations around 2900cm−1. From these integrated absorptions the amount of aliphatic carbon Cal (mg of aliphatic carbon per gram of solvent-extracted rock) is calculated by means of a calibration with model rocks. Carbonate overtones which interfere in the case of limestones are eliminated by comparison to a CaCO3 standard.The method has been applied to rocks containing kerogens of different types and maturities at TOC levels of 0.5 to 12%. The aliphatic carbon concentrations range from 0.5 to 60mg·g−1 and correlate reasonably well with the residual genetic potentials of the rocks as measured by S2 values from Rock-Eval pyrolysis. The ratio S2/Cal is found to decrease with burial depth reflecting a maturity enhanced conversion of aliphatic carbon to fixed aromatic carbon under Rock-Eval conditions.  相似文献   
5.
Organic carbon in estuarine sediments can have many different sources. Terrestrial, riverine, estuarine and marine C pools may all contribute to and influence the organic C (Corg) inventory of the estuarine sediments and the differing stable isotope signatures of the sources are reflected in the sediment's overall 13C content. Ecological interpretations of sedimentary isotope data may, however, be limited by the fact the total Corg inventory of a sediment may not be an accurate representation of the fraction that is labile and being actively turned over by the sedimentary community. To gain a better understanding of sedimentary Corg dynamics in estuaries and the relationship between the sedimentary C pool and the Corg undergoing mineralisation, we studied three components of an estuarine system: (1) the sedimentary Corg inventory on a transect from the mouth to the upper end of the estuary, (2) temporal changes of sedimentary Corg at one station throughout a year, and (3) the δ13C of respired CO2 compared to the δ13C of available source material and sedimentary Corg in a novel application of methods developed for soil science. Our experiments demonstrated that material of marine origin dominated the studied estuary. At the time-series station, material of marine origin dominated the sedimentary Corg throughout the 1-yr study period. δ13C values of CO2 released from the sediment differed significantly from the sedimentary Corg inventory at all study sites, but also clearly reflected differences between the main sections of the estuary. These results suggest that δ13C measurements of respired CO2 are promising as a tool to advance our understanding of C cycling in estuaries, and highlight that the sedimentary Corg pool alone may not be a satisfactory indicator of OM utilisation in estuarine sediments.  相似文献   
6.
To reduce the weathering rate of natural building stones, a wide variety of water repellents and consolidants are commercially available. Although a lot of research is performed on these products, it remains difficult to determine which product is appropriate to use for a certain type of building stone. Each type of building stone has its own petrographic characteristics (mineralogy, texture, …), leading to typical physical and technical properties which influence its rate of decay. The localisation of the products inside a stone type is not only depending on the properties of the products themselves, but also linked to the texture and structure of the stone. The impregnation depth of the products strongly influences their efficiency and is therefore a key issue in the determination if a product is functional for a certain type of stone. X-ray micro-CT has recently been introduced as a non-destructive material evaluation technique for engineering and geology purposes. The fact that micro-CT can provide information about the internal structure and properties of natural building stones, is a major advantage in the study of their conservation. Firmly linked with more classical research techniques, this non-destructive technique offers an extra dimension to the cultural heritage research.In this paper, non-destructive X-ray computed micro-tomography (micro-CT) turns out to be a powerful tool as it can visualise the presence of water repellents and consolidants inside the stone and can help to detect the influence that these treatments exert on porosity and pore-size distribution. For the visualization of the product its atomic number and density and the amount of product inside the natural building stone is crucial. Besides the contrast in attenuation, the resolution of the micro-CT also needs to be taken into account to obtain a good contrast between stone and product. By doping with 3-bromopropyltrimethoxysilane, more contrast occurs between the stone material and the conservation product. When the amount of product inside the samples is very low and the product is homogeneously spread inside the sample, the doped product is difficult to distinguish from the stone material due to the resolution of the micro-CT. When the amount of doped product inside the stone material reaches a certain threshold value, the dope will appear in the 2D cross-sections derived from micro-CT, creating a good visualization of the products inside the stone samples.  相似文献   
7.
The benthic food web of the deep Faroe–Shetland Channel (FSC) was modelled by using the linear inverse modelling methodology. The reconstruction of carbon pathways by inverse analysis was based on benthic oxygen uptake rates, biomass data and transfer of labile carbon through the food web as revealed by a pulse-chase experiment. Carbon deposition was estimated at 2.2 mmol C m−2 d−1. Approximately 69% of the deposited carbon was respired by the benthic community with bacteria being responsible for 70% of the total respiration. The major fraction of the labile detritus flux was recycled within the microbial loop leaving merely 2% of the deposited labile phytodetritus available for metazoan consumption. Bacteria assimilated carbon at high efficiency (0.55) but only 24% of bacterial production was grazed by metazoans; the remaining returned to the dissolved organic matter pool due to viral lysis. Refractory detritus was the basal food resource for nematodes covering ∼99% of their carbon requirements. On the contrary, macrofauna seemed to obtain the major part of their metabolic needs from bacteria (49% of macrofaunal consumption). Labile detritus transfer was well-constrained, based on the data from the pulse-chase experiment, but appeared to be of limited importance to the diet of the examined benthic organisms (<1% and 5% of carbon requirements of nematodes and macrofauna respectively). Predation on nematodes was generally low with the exception of sub-surface deposit-feeding polychaetes that obtained 35% of their energy requirements from nematode ingestion. Carnivorous polychaetes also covered 35% of their carbon demand through predation although the preferred prey, in this case, was other macrofaunal animals rather than nematodes. Bacteria and detritus contributed 53% and 12% to the total carbon ingestion of carnivorous polychaetes suggesting a high degree of omnivory among higher consumers in the FSC benthic food web. Overall, this study provided a unique insight into the functioning of a deep-sea benthic community and demonstrated how conventional data can be exploited further when combined with state-of-the-art modelling approaches.  相似文献   
8.
The response of a sub-arctic, deep-sea macrofaunal community to a simulated food sedimentation event was studied by means of a stable isotope “pulse-chase” experiment. A food pulse was simulated by adding 500 mg C m−2 of 13C-labelled diatoms, Chaetoceros radicans, to sediment cores retrieved from 1080 m in the Faroe-Shetland Channel. Carbon uptake by specific macrofaunal groups was quantified after 3 and 6 days of incubation. The carbon uptake of the dominant taxon (Polychaeta) was quantified at the genus-, and where possible, species-level, representing a data resolution that is rare in deep-sea tracer studies. The macrofaunal community reacted rapidly to the diatom addition, with 47% and 70% of the animals illustrating 13C-enrichment after 3 and 6 days, respectively. Approximately 95% of C uptake was located in the upper 2 cm due to the particularly shallow vertical distribution of the macrofaunal community and the nonexistent tracer subduction by burrowing species. Polychaetes of the families Ampharetidae and Cirratulidae were among the most heavily labelled with above background enrichment reaching 1300‰. Approximately 0.8 and 2.0 mg C m−2 were processed by the macrofauna after 3 and 6 days, representing 0.2% and 0.4% of the added carbon, respectively. It was not possible to differentiate sub-surface deposit-feeding polychaetes from predator/scavenger- and omnivorous polychaetes using their natural ??15N signatures. However, the combination of natural abundance ??15N data and 13C-labelling experiments proved to be useful for elucidating trophic relations in deep-sea food webs. This study confirms that macrofauna play an active role in the short-term carbon cycling at bathyal depths even at sub-zero temperatures and highlights the need for detailed knowledge of the community structure in understanding carbon processing patterns and early diagenesis of organic matter in marine sediments.  相似文献   
9.
Effects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil (gas_min) at which oxygen stress occurs.First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, gas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale).We analyzed the validity of constant critical values to represent oxygen stress in terms of gas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake).The simulations showed that gas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, gas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress.We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for gas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号