首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   48篇
  国内免费   36篇
测绘学   10篇
大气科学   23篇
地球物理   131篇
地质学   308篇
海洋学   20篇
天文学   18篇
综合类   34篇
自然地理   26篇
  2023年   8篇
  2022年   21篇
  2021年   47篇
  2020年   33篇
  2019年   28篇
  2018年   79篇
  2017年   48篇
  2016年   64篇
  2015年   42篇
  2014年   35篇
  2013年   43篇
  2012年   16篇
  2011年   25篇
  2010年   9篇
  2009年   18篇
  2008年   9篇
  2007年   5篇
  2006年   8篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1986年   1篇
排序方式: 共有570条查询结果,搜索用时 15 毫秒
1.
Natural Hazards - The original article was updated and corrected due to numbering errors in Figure 8’s subfigures and the placement of some of the article’s other figures. Additional...  相似文献   
2.
Performance of hemi-cylindrical and rectangular submerged breakwaters   总被引:1,自引:0,他引:1  
A parametric experimental study is conducted to compare the reflection and transmission characteristics of submerged hemi-cylindrical and rectangular rigid and water-filled flexible breakwater models. The results show that, for the rigid breakwaters, rectangular models are more effective than hemi-cylindrical ones in terms of reduction of transmitted waves. As for the flexible breakwaters, the hemi-cylindrical models may give better wave reflection than rectangular ones. However, the energy loss induced by the rectangular breakwaters is much larger and more significant to result in an overall better efficiency in terms of reduction in wave transmission. The effects of internal pressure show that the lowest pressurized flexible models considered in this work are the most effective in the reduction of the transmitted wave height. Higher wave reflection, lower wave transmission and higher energy loss are obtained consistently at the lower submergence depth ratio.  相似文献   
3.
Groundwater development has contributed significantly to food security and reduction in poverty in Pakistan. Due to rapid population growth there has been a dramatic increase in the intensity of groundwater exploitation leading to declining water tables and deteriorating groundwater quality. In such prevailing conditions, the hydrogeological appraisal of escalating groundwater exploitation has become of paramount importance. Keeping this in view, a surface water–groundwater quantity and quality model was developed to assess future groundwater trends in the Rechna Doab (RD), a sub-catchment of the Indus River Basin. Scenario analysis shows that if dry conditions persist, there will be an overall decline in groundwater levels of around 10 m for the whole of RD during the next 25 years. The lower parts of RD with limited surface water supplies will undergo the highest decline in groundwater levels (10 to 20 m), which will make groundwater pumping very expensive for farmers. There is a high risk of groundwater salinization due to vertical upconing and lateral movement of highly saline groundwater into the fresh shallow aquifers in the upper parts of RD. If groundwater pumping is allowed to increase at the current rate, there will be an overall decline in groundwater salinity for the lower and middle parts of RD because of enhanced river leakage.  相似文献   
4.
The three most important components necessary for functioning of an operational flood warning system are: (1) a rainfall measuring system; (2) a soil moisture updating system; and, (3) a surface discharge measuring system. Although surface based networks for these systems can be largely inadequate in many parts of the world, this inadequacy particularly affects the tropics, which are most vulnerable to flooding hazards. Furthermore, the tropical regions comprise developing countries lacking the financial resources for such surface-based monitoring. The heritage of research conducted on evaluating the potential for measuring discharge from space has now morphed into an agenda for a mission dedicated to space-based surface discharge measurements. This mission juxtaposed with two other upcoming space-based missions: (1) for rainfall measurement (Global Precipitation Measurement, GPM), and (2) soil moisture measurement (Hydrosphere State, HYDROS), bears promise for designing a fully space-borne system for early warning of floods. Such a system, if operational, stands to offer tremendous socio-economic benefit to many flood-prone developing nations of the tropical world. However, there are two competing aspects that need careful assessment to justify the viability of such a system: (1) cost-effectiveness due to surface data scarcity; and (2) flood prediction uncertainty due to uncertainty in the remote sensing measurements. This paper presents the flood hazard mitigation opportunities offered by the assimilation of the three proposed space missions within the context of these two competing aspects. The discussion is cast from the perspective of current understanding of the prediction uncertainties associated with space-based flood prediction. A conceptual framework for a fully space-borne system for early-warning of floods is proposed. The need for retrospective validation of such a system on historical data comprising floods and its associated socio-economic impact is stressed. This proposal for a fully space-borne system, if pursued through wide interdisciplinary effort as recommended herein, promises to enhance the utility of the three space missions more than what their individual agenda can be expected to offer.  相似文献   
5.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
7.
Slope failure usually occurs when soil particles are unable to build a strong bond with each other and become loose because of the presence of water. Water pressure weakens the ties between the particles and they tend to slip. Therefore, this study focused on the use of horizontal drains to reduce water entry and control the ground water level as a method of slope stabilization. Several previous studies have shown that the use of horizontal drains to lower the water level in soil is one of the fastest and cheapest slope stabilization methods. The main objective of this study is to analyze the effect of horizontal drains on slope stability. Information on slope condition during the landslides which happened at Precinct 9, Putrajaya, Malaysia was used for analytical simulation. Seep/W and Slope/W analyses were carried out with GeoStudio version 2007 software. Slopes with and without horizontal drains were then compared in terms of groundwater level and factor of safety (FOS) values. Scenarios were created for seven types of soil namely: residual, clay, silt, loam, sandy loam, sandy clay loam, and silt clay loam for a case wise analysis. The effect of daily steady rainfall and realcondition rainfall was studied. These cases were studied to find the effectiveness of horizontal drains as a slope stabilization tool. The results revealed that when a drain was installed on a slope, the groundwater level dropped immediately and the safety factor of the slope increased. Sandy loam (sL) soil was identified as the best candidate for a horizontal drain. Its highly saturated hydraulic conductivity Ks facilitated groundwater drain through the horizontal drain effectively. Silt clay loam (scL) soil was identified as the least effective candidate.  相似文献   
8.
Variability in precipitation is critical for the management of water resources. In this study, the research entropy base concept was applied to investigate spatial and temporal variability of the precipitation during 1964–2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy was applied on precipitation data on a monthly, seasonally, annually, decade scale and the number of rainy days for each selected station. Intensity entropy and apportionment entropy were used to calculate the variability over individual year and decade, respectively. Subsequently, Spearman’s Rho and Mann–Kendall tests were applied to observe for trends in the precipitation time series. The statistics of sample disorder index showed that the precipitation during February (mean 1.09, max. 1.26 and min. 0.80), April (mean 1.12, max. 1.29 and min. 0.99) and July (mean 1.10, max. 1.20 and min. 0.98) contributed significantly higher than those of other months. Overall, the contribution of the winter season was considerably high with a standard deviation of 0.10. The precipitation variability on decade basis was observed to increase from decade 1964–1973 and 1994–2003 with a mean value of decadal apportionment disorder index 0.023 and 0.053, respectively. In addition, the Mann–Kendall test value (1.90) showed a significant positive trend only at the Shangzhi station.  相似文献   
9.
The present study deals with the seismic site classification of Bahrah area, Wadi Fatima, to characterize the local site conditions. The dynamic behavior of sediments was studied by the application of surface wave inversion. The multichannel analysis of surface waves (MASW) shallow geophysical technique was utilized for site classification. MASW survey was carried out at 66 sites along with 13 seismic refraction profiles at suitable localities. MASW and seismic refraction profiles were processed and compared with the available borehole data. The integration of MASW techniques with seismic refraction and borehole data progressively enhanced the subsurface visualization and reliability of the shear wave velocity estimation in the subsurface in the study area. The subsurface shear-wave velocity model was achieved by the solution of an inverse problem-based dispersion of surface waves and propagation in a vertically heterogeneous medium. The 2D genetic algorithm was employed for the inversion of dispersion curves to obtain velocity and thickness of subsurface layers. The depth to engineering bedrock and velocity of shear waves in the first 30 m was deciphered and mapped. The depth of bedrock in study area varies from 4 to 30 m, and V S 30 ranges from 320 to 800 m/s. The most of study area falls in B and C class categories in addition to few sites of D class according to the NEHRP guidelines.  相似文献   
10.

The Uromia–Dokhtar Magmatic Arc (UDMA) is a northwest–southeast trending magmatic belt which is formed due to oblique subduction of Neotethys underneath Central Iran and dominantly comprises magmatic rocks. The Jebal-e-Barez Plutonic Complex (JBPC) is located southeast of the UDMA and composed of quartz diorite, granodiorite, granite, and alkali granite. Magmatic enclaves, ranging in composition from felsic to mafic, are abundant in the studied rocks. Based on the whole rock and mineral chemistry study, the granitoids are typically medium-high K calc-alkaline and metaluminous to peraluminous that show characteristics of I-type granitoids. The high field strength (HFS) and large ionic radius lithophile (LIL) element geochemistry suggests fractional crystallization as a major process in the evolution of the JBPC. The tectonomagmatic setting of the granitoids is compatible with the arc-related granitic suite, a pre-plate collision granitic suite, and a syncollision granitic suite. Field observations and petrographic and geochemical studies suggest that the rocks in this area are I-type granitoids and continental collision granitoids (CCG), continental arc granitoids (CAG), and island arc granitoid (IAG) subsections. The geothermobarometry based on the electron probe microanalysis of amphibole, feldspars, and biotite from selected rocks of JBPC implies that the complex formed at high-level depths (i.e., 9–12 km; upper continental crust) and at temperatures ranging from 650 to 750 °C under oxidation conditions. It seems that JBPC is located within a shear zone period, and structural setting of JBPC is extensional shear fractures which are product of transpression tectonic regime. All available data suggested that these granitoids may be derived from a magmatic arc that was formed by northeastern ward subduction of the Neotethyan oceanic crust beneath the Central Iran in Paleogene and subsequent collision between the Arabian and Iranian plates in Miocene.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号