首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   6篇
  国内免费   7篇
测绘学   11篇
大气科学   3篇
地球物理   41篇
地质学   92篇
海洋学   10篇
天文学   6篇
综合类   4篇
自然地理   9篇
  2022年   5篇
  2021年   4篇
  2020年   7篇
  2019年   4篇
  2018年   16篇
  2017年   21篇
  2016年   23篇
  2015年   9篇
  2014年   17篇
  2013年   13篇
  2012年   13篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1985年   1篇
  1984年   2篇
  1981年   1篇
  1979年   2篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
1.
Barite (BaSO4) deposits generally arise from mixing of soluble barium-containing fluids with sulfate-rich fluids. While the role of biological processes in modulating barium solubility has been shown, no studies have shown that the biological oxidation of sulfide to sulfate leads to barite deposition. Here we present an example of microbially mediated barite deposition in a continental setting. A spring in the Anadarko Basin of southwestern Oklahoma produces water containing abundant barium and sulfide. As emergent water travels down a stream to a nearby creek, sulfate concentration increases from 0.06 mM to 2.2 mM while Ba2+ concentration drops from 0.4 mM to less than 7 μM. Stable isotope analysis, microbial activity studies, and in situ experiments provide evidence that as sulfide-rich water flows down the stream, anaerobic, anoxygenic, phototrophic bacteria play a dominant role in oxidizing sulfide to sulfate. Sulfate then precipitates with Ba2+ producing barite as travertine, cements, crusts, and accumulations on microbial mats. Our studies suggest that phototrophic sulfide oxidation and concomitant sulfur cycling could prove to be important processes regulating the cycling of barium in continental sulfur-containing systems.  相似文献   
2.
Storms, hurricanes, and earthquakes may cause seabed instability, especially if the seabed is weak. The seabed instability, manifested in movement of soil layers, exerts lateral forces that may cause large stresses in offshore foundations. The induced stresses may compromise the stability of the foundation and supported structure. The effect of seabed instability on a fixed offshore structure is examined in this study. The method used accounts for soil nonlinearity, dynamic soil resistance, and pile–soil–pile interaction within the stable soil layer. Dynamic py curves, dynamic tz curves and qz curves have been used to simulate the soil resistance in the lateral and axial directions. The effect of different parameters that influence the response of offshore structures to seabed instability is evaluated. The parameters considered include the value of soil movement, the sliding layer depth, the wave loading, the pile flexibility, the soil movement profile, and the axial loading at the pile head. The response predicted using the proposed analysis compared well with that calculated using a boundary element solution for a case history of a failed offshore platform.  相似文献   
3.
Natural Hazards - Landslides can cause extensive damage, particularly those triggered by earthquakes. The current study used back propagation of an artificial neural network (ANN) to conduct risk...  相似文献   
4.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   
5.
This study aimed to identify indicator species and explore the most important environmental and management variables contributing to vegetation distribution in a hilly upper dam landscape in Zagros Mountain chain, Iran. A stratified random sampling method was used to collect topographic, edaphic, management and vegetation data. The density and cover percentage of perennial species were measured quantitatively. Indicator species were identified using the two-way indicator species analysis. Besides calculating physiognomic factors in sample sites, 24 soil samples were collected from 0 to 30 cm of soil depth and analyzed in terms of gravel percentage, texture, saturation moisture, organic matter, pH and electrical conductivity in saturation extract, lime percentage, soluble calcium and magnesium, available phosphorus, Cation Exchange Capacity(CEC) and soluble sodium and potassium. Multivariate techniques including Canonical Correspondence Analysis and Multi-Dimensional Scaling were used to explore the relationships of species with environmental and management variables. Seven plants were identified as indicator species due to being significantly correlated with management(grazing or non-grazing) and edaphic variables such as CEC, soil texture, pH, CaCO_3 percentage and physiographic variable including slope, elevation, and convex and concave formations(p 0.05). Overall, overgrazing and its subsequent effects on soil characteristics, loss of vegetation cover and trampling were found as the major causes of deterioration. Sustainable and integrated management practices such as the implementation of appropriate grazing systems were suggested to enhance soil quality and reduce the accelerated erosion in upper dam zones.  相似文献   
6.
This study aims at evaluating the global geoid model for a regional shoreline fitting using advanced soft computing techniques and global navigation satellite system/leveling measurements. Artificial neural networks, fuzzy logic, and least square support vector machine models are developed and used to fit the global geoid model for the north coastal Egyptian line. In addition, a novel estimation geoid model is designed and evaluated based on the latest global geoid models. The results of the three estimation models show that they can be used to correct the shoreline geoid model, in terms of root mean square error that ranges from 1.7 to 8.5?cm. Moreover, it is found that the least square vector machine model is a competitive approach with certain advantage in solving complex problems represented by missing data.  相似文献   
7.
8.
One important tool for water resources management in arid and semi-arid areas is groundwater potential mapping. In this study, four data-mining models including K-nearest neighbor (KNN), linear discriminant analysis (LDA), multivariate adaptive regression splines (MARS), and quadric discriminant analysis (QDA) were used for groundwater potential mapping to get better and more accurate groundwater potential maps (GPMs). For this purpose, 14 groundwater influence factors were considered, such as altitude, slope angle, slope aspect, plan curvature, profile curvature, slope length, topographic wetness index (TWI), stream power index, distance from rivers, river density, distance from faults, fault density, land use, and lithology. From 842 springs in the study area, in the Khalkhal region of Iran, 70 % (589 springs) were considered for training and 30 % (253 springs) were used as a validation dataset. Then, KNN, LDA, MARS, and QDA models were applied in the R statistical software and the results were mapped as GPMs. Finally, the receiver operating characteristics (ROC) curve was implemented to evaluate the performance of the models. According to the results, the area under the curve of ROCs were calculated as 81.4, 80.5, 79.6, and 79.2 % for MARS, QDA, KNN, and LDA, respectively. So, it can be concluded that the performances of KNN and LDA were acceptable and the performances of MARS and QDA were excellent. Also, the results depicted high contribution of altitude, TWI, slope angle, and fault density, while plan curvature and land use were seen to be the least important factors.  相似文献   
9.
Alluvial fans are one of the most important landforms in geomorphological and paloenvironmental studies. The objective of this study was the application of clay mineral assemblages and micromorphological properties of the studied paleosols in the geomorphic surfaces of an alluvial fan in the eastern Isfahan as proxies for paleoenvironmental and paleoclimatic changes. Micromorphology, X-ray diffraction, and scanning electron microscopy approaches were used to study the representative pedons. The results indicated that the illuviation process in the calcareous soils of the arid regions of the eastern Isfahan was probably in response to Quaternary moist conditions. There was no significant difference between clay coating properties of the studied relict and buried paleosols. Clay mineralogical study suggested that kaolinite and illite were inherited from the parent materials, while smectite and palygorskite were formed in the soil environment. Paleoargillic horizon was characterized by smectite and calcic (especially the calcrete) horizons were dominated by palygorskite. Palygorskite was accumulated by both neoformation and illuviation processes. High clay content, high intensity of smectite peak, and activity of the illuviation process in paleoargillic horizon demonstrated the seasonality of climate (rainfall) even in the moist periods of Quaternary in Central Iran. Clay mineralogical assemblages suggested a trend of increasing environmental aridity in the study area. This study, therefore, highlighted the role of clay mineralogical investigations in arid lands’ geomorphological and paleoenvironmental researches.  相似文献   
10.
Earthquake response characteristic and sensitivity of 1-Hz Global Navigation Satellite System - precise point positioning (GNSS-PPP) for a seismic response in time and frequency domains are the main objectives of this study. The Delta and Cairo areas, Egypt, experiencing the shock of the Greece earthquake occurring on April 16, 2015 (18:50 hours), is presented in this study. The results of this study reveal that the seismic wave effect is very small and can be neglected inside the Delta region and the strong motion occurred in an upward direction for the whole monitoring area. Furthermore, the time-frequency analysis illustrates the ability of the time and frequency domains to use and analyze the surface motion based on a 1-Hz sampling frequency and to detect the small- and high-strength motions of seismic waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号